Category Archives: stroke

The Broken Brain Docuseries is now re-running

Due to popular demand the producers of this terrific series are making it available again  on line this weekend. If you have not taken advantage of this information you can do it here:

Replay (YouTube) | Broken Brain

Enjoy

Bob Hansen MD

Cartoon humor: A Prescription for Health!

 

prescription-for-exercise-cropped

Hat tip to Tommy Wood MD, PhD for introducing me to this great cartoon.

So what would happen if your doctor prescribed this? Would you be shocked? Would you follow the advice? Sadly few doctors make such recommendations as explicitly as this cartoon and fewer patients follow the advice.

How important are the elements in this advice?

They are essential. We too often focus on dietary concerns at the expense of ignoring other important low hanging fruit. Early morning  outdoor exercise with exposure to natural light in a green space, even on a cloudy or rainy day, is essential for health. Why? There are many reasons. Click the link above to read fitness expert Darryl Edward’s discussion with references. In fact outdoor exercise in a greenspace is more beneficial than the same exercise indoors. The reasons are many, including but not limited to Vitamin D production.

Early daytime exposure to natural outdoor light helps to maintain our Circadian rhythm and align the biologic clock in all of our cells and organs with the central biological Circadian clock in our brain. Most folks do not know that we have a biologic clock deep within our brain and that all the organs and cells of our body also have clocks. They all need to be synchronized with each other and with the sun for optimal health. When they are not synchronized bad things happen. Night shift workers and other folks with disturbed sleep have higher rates of cancer , depressionhypertension, heart attack and stroke.

Maintaining our circadian rhythm is vital to achieving adequate high quality restorative sleep. In turn, obtaining adequate restorative sleep contributes to lower cardiovascular disease risk in addition to four traditional lifestyle risk factors.

Exposure to artificial light at night disrupts our circadian rhythm and impairs the onset of sleep.

In medical school I learned that our retina has two cell types, rods and cones. But advances in science have revealed a  third cell type called retinal ganglionic cells. 

These cells are  particularly sensitive to blue light and directly connected to our central biological clock . Exposure to artificial light, especially from TV screens, computers, cell phones and other electronic devices after sunset disrupts our sleep cycle and delays the onset of sleep. That is why wearing blue light filtering glasses in the evening helps many folks to improve their sleep quality and duration.

Sleep deprivation for even one night causes elevation in interleukin 6 levels the following day. Interleukin 6 suppresses immune function and excessive levels cause bone and tissue damage (especially cardiovascular). Sleep deprivation  increases  Stress hormones (cortisol, adrenalin), decreases prolactin and Growth hormone , and decreases the nightly production of ATP .

Melatonin , often called the sleep hormone, is produced most abundantly during restorative sleep and essential for tissue healing, immune function, cancer prevention, and defense against tissue oxidation. These are just a few of the roles melatonin and sleep cycles play in determining our health..

So exercise outdoors in a green space daily to help synchronize your biologic clock with the sun, dim the lights in the evening and if you must watch TV or work on electronic devices before bed wear Blue Light filter glasses .

Of course eating an abundance of colorful fresh organic vegetables and fruits, and practicing some stress reduction techniques every day are equally important and essential to health and functional status.

Finally, not mentioned in the cartoon above is another healthy lifestyle choice, intermittent fasting (IF). IF will be discussed in the next post.

Until then, sleep well, exercise regularly out doors in a green space environment, eat clean, learn and practice some regular stress reduction techniques and read the next post about IF.

Bob Hansen MD

Functional Medicine: Getting to the Root Causes of Illness, A cure for Alzheimer’s

Today I watched a great TED talk by Dr. Rangan Chaterjee discussing his own journey in the discovery and implementation of a functional medicine approach to caring for his patients. The concept of using basic science and clinical science to diagnose and treat the root causes of illness, rather than treating symptoms, has been around for more than two decades.  This approach has recently started to attract more attention, especially within the community of younger physicians who have become more dissatisfied with the frustrations of traditional allopathic medicine.

Here is the talk. Dr. Chatterjee covers lots of ground in a passionate and informative talk.

Enjoy this talk. If you would like to learn about how a functional medicine approach can CURE ALZHEIMER’S DISEASE then watch this video of Dr. Bredesen who gave this lecture at a meeting of the American College of Nutrition.

Doctor Bredesen, an acclaimed neuroscientist, researcher, and more recently a brilliant clinician, has been criticized by the academic research community for implementing a clinical research protocol that addresses more than one variable at a time! Unfortunately, medical science has been handcuffed by the drug-model of clinical research wherein only one variable (drug vs. placebo for example) is studied. But if an illness has many potential contributing root causes, changing only one variable is doomed to failure, as Dr. Bredesen explains in this lecture.

Sleep well, eat clean, get outdoors every morning to help keep your circadian rhythm and biological clock in order.

Bob Hansen MD

Sugar Industry paid Harvard researchers to trash fat and exonerate sugar!

By now most of you have already heard about the study published in JAMA that reveals an unsavory historical scenario wherein the sugar industry  funded an academic review paper that diverted the medical community’s attention from sugar as a vector for disease and erroneously placed it on saturated fat and cholesterol consumption. You can read about it by clicking on the following link.

How the Sugar Industry Shifted Blame to Fat – The New York Times

Here is a quote from the above cited article in the NY times:

The internal sugar industry documents, recently discovered by a researcher at the University of California, San Francisco, and published Monday in JAMA Internal Medicine, suggest that five decades of research into the role of nutrition and heart disease, including many of today’s dietary recommendations, may have been largely shaped by the sugar industry.

Here is the abstract of the article published in JAMA (Journal of the American Medical Association).

Sugar Industry and Coronary Heart Disease Research:  A Historical Analysis of Internal Industry Documents | JAMA Internal Medicine | JAMA Network

Early warning signals of the coronary heart disease (CHD) risk of sugar (sucrose) emerged in the 1950s. We examined Sugar Research Foundation (SRF) internal documents, historical reports, and statements relevant to early debates about the dietary causes of CHD and assembled findings chronologically into a narrative case study. The SRF sponsored its first CHD research project in 1965, a literature review published in the New England Journal of Medicine, which singled out fat and cholesterol as the dietary causes of CHD and downplayed evidence that sucrose consumption was also a risk factor. The SRF set the review’s objective, contributed articles for inclusion, and received drafts. The SRF’s funding and role was not disclosed. Together with other recent analyses of sugar industry documents, our findings suggest the industry sponsored a research program in the 1960s and 1970s that successfully cast doubt about the hazards of sucrose while promoting fat as the dietary culprit in CHD. Policymaking committees should consider giving less weight to food industry–funded studies and include mechanistic and animal studies as well as studies appraising the effect of added sugars on multiple CHD biomarkers and disease development.

This disturbing conspiracy reveals yet another industry sponsored distortion of science which had great impact on the health of our nation. The impact is accelerating today as the epidemics of obesity and diabetes rage out of control. But sugar consumption has not just been tied to obesity, diabetes, heart attacks and strokes. Sugar added foods and beverages have likely contributed to dementia,  many forms of cancer and other chronic debilitating diseases. Sugar and refined carbohydrates mediate these effects by increasing systemic inflammation and contributing to insulin resistance. Inflammation and insulin resistance are pathways to many disease processes. Metabolic syndrome (pre-diabetes) is the hallmark combination of multiple abnormalities with insulin resistance as the underlying root cause. Prolonged insulin resistance leads to type 2 diabetes and contributes to heart attacks, strokes,  cancer and dementia. In fact dementia is often referred to as type 3 diabetes, mediated in large part by insulin resistance in the brain.

Here are links to discussions and videos relevant to these topics.

Preventing Alzheimer’s Disease Is Easier Than You Think | Psychology Today

How to Diagnose, Prevent and Treat Insulin Resistance [Infographic] – Diagnosis:Diet

Reversing Type 2 diabetes starts with ignoring the guidelines | Sarah Hallberg | TEDxPurdueU – YouTube

I have previously provided links to the YouTube lectures given by the brilliant Dr. Jason Fung, These are worth mentioning again.

The Aetiology of Obesity Part 1 of 6: A New Hope

Insulin Toxicity and How to Cure Type 2 Diabetes

How to Reverse Type 2 Diabetes Naturally

Nina Teicholz is also worth a watch.

Nina Teicholz: The Big Fat Surprise – (08/07/2014)

And here is an important talk about sugar, refined carbohydrates and cancer.

Plenty to chew on.

We did not evolve to eat lots of sugar! It is dangerous stuff.

Bob Hansen MD

 

 

 

Still want a doughnut or cereal for breakfast?

A recent study has demonstrated that brain deterioration detected by MRI scan seems to be linked to higher blood sugar levels even within the “normal range”.

Here are some important quotes from a Medscape discussion:

“Previous studies have shown that T2D (type 2 diabetes) is associated with brain atrophy, cognitive deficits, and increased risk for dementia. Elevated plasma glucose levels still within the normal range increase the risk for T2D.”

“Studies showed that in apparently healthy individuals, atrophy of the amygdala and hippocampus increased as FPG (fasting plasma glucose) within the normal range increased.”

“You start having abnormalities in the brain even at levels that are within the normal range. This is important because, should we be defining normal glucose levels for different purposes?”

Bottom line, as discussed by neurologist David Perlmutter in his book Grain Brain, even “normal” blood sugars as defined by measurements in our society many not be healthy. If a whole modern culture has higher blood sugars, higher blood pressures, fatter waistlines compared to our healthy hunter gatherer ancestors, then the “normal range” may not really be “normal”. If we define “normal” as individuals within 1 or 2 standard deviations of the mean, but a large portion of the population is unhealthy, is normal healthy?

Do you want to spend your last day in diapers drooling in a nursing home or do you want to go out hiking in the woods and enjoying grandchildren?

The choice is yours, but the next time you have a doughnut or cereal for breakfast, consider the long term consequences.

Live clean and prosper.

Bob Hansen MD

Here is the whole Medscape article for those interested in the nitty-gritty details.

White Matter Lesions Linked to Rising Plasma Glucose

SANTIAGO, Chile — Higher fasting plasma glucose (FPG) levels are associated with a higher burden of brain white matter hyperintensities (WMH), particularly in the frontal lobes.

The association is especially strong in individuals with type 2 diabetes (T2D), a new study shows.

Lead author Nicolas Cherbuin, PhD, and colleagues in the Centre for Research on Ageing, Health and Wellbeing of the Australian National University in Canberra used data from the Personality and Total Health (PATH) Through Life Project, a large, longitudinal, population-based study investigating the time course and determinants of cognitive aging and mental health.

The study findings were presented here at the XXII World Congress of Neurology (WCN).

The PATH Through Life Project aims to follow approximately 7500 randomly selected adults in the greater Australian capital area over 20 years.

From an older age cohort (60 to 64 years; n = 2551), 401 community-living individuals were available for analysis. All were free of neurologic disorders, stroke, and gross brain abnormalities and had a Mini-Mental State Examination (MMSE) score of 27 or greater.

Using linear regression analysis, the researchers tested the association between FPG and WMH volumes, controlling for covariates of age, sex, intracranial volume, education, smoking, hypertension, body mass index (BMI), diabetes, and interactions of diabetes and sex.

Plasma glucose was measured after an overnight fast and was categorized as normal, defined as less than 5.6 mmol/L (<100.8 mg/dL), impaired (5.6 to 7 mmol/L [100.8 to 126 mg/dL]), or T2D (≥7 mmol/L [≥126 mg/dL] or self-report of T2D).

Patient groups with normal FPG (n = 276), impaired FPG (n = 86), or T2D (n = 39) were similar in age (approximately 63 years), education (14 years), and MMSE scores (29.26 to 29.45). BMI was higher in the impaired FPG and T2D groups than in the normal FPG group. There was also more hypertension in the T2D group.

WMH Mostly in Frontal and Temporal Lobes

Dr Cherbuin reported that among the entire cohort, higher FPG was associated with a higher burden of WMH in the right hemisphere (P = .02) but not in the left hemisphere. The effect was most prominent in the frontal and temporal lobes.

These findings were largely attributable to participants with impaired FPG or T2D, and the effect was most pronounced for participants with T2D.

Table. WMH Volumes per FPG Level

Location Normal FPG (n = 276) Impaired FPG (n = 86) T2D (n = 39)
Left hemisphere WMH (mm3) 2343.68 ± 2311.72 2331.07 ± 2528.34 2800.62 ± 2152.87
Right hemisphere WMH (mm3) 2379.59 ± 2645.19 2414.98 ± 2609.72 3199.79 ± 4031.47
Values are expressed as mean ± standard deviation.

 

Previous studies have shown that T2D is associated with brain atrophy, cognitive deficits, and increased risk for dementia. Elevated plasma glucose levels still within the normal range increase the risk for T2D.

Studies showed that in apparently healthy individuals, atrophy of the amygdala and hippocampus increased as FPG within the normal range increased. Striatum volumes decreased several years later in line with higher FPG or occult T2D. Functionally, poorer performance of fine motor skills is evident with higher FPG.

Session chairman Samuel Wiebe, MD, professor of neurology at the University of Calgary, Alberta, Canada, commented to Medscape Medical News that the present study intrigued him because it addresses the fact that the definition of normal glucose “maybe doesn’t apply to everything…. You start having abnormalities in the brain even at levels that are within the normal range. This is important because, should we be defining normal glucose levels for different purposes?”

Higher levels of glucose even within the normal range may affect facets that are just beginning to be understood, such as white matter changes. “That’s just one aspect. There could be other areas,” he said. “So I think that that’s an intriguing finding that deserves further study.”

Dr Wiebe said the greater effect of elevated glucose seen in the frontal lobes may be related to some degree to their sheer size or to blood flow. “I think that the truth is that it is a spectrum. It begins to have an impact at a range of values that are lower than the cutoff” for traditional interventions, he said.

He feels it would be interesting to follow up this study with assessments that go beyond WMH volume measurements, such as tractography or connectivity studies that look at brain function.

There was no commercial funding for the study. Dr Cherbuin and Dr Wiebe have disclosed no relevant financial relationships.

XXII World Congress of Neurology (WCN). Abstract 434. Presented November, 2, 2015.

Stress Reduction and Health

Mindfulness based stress reduction (MBSR) has been demonstrated to have beneficial effects relative to several physiologic measurements in humans. These include improved immune status, decreased inflammation as measured by blood tests, improved DNA repair (increased telomere length), and alterations in metabolic activity in areas of the brain that are viewed as beneficial relative to stress, anxiety and pain as measured by functional MRI scan of the brain (fMRI). Similarly other forms of meditation have been studied relative to cardiovascular risk in humans. The results indicate that stress reduction from meditation can decrease the “composite risk of death, heart attack and stroke” by 48% in patients who have experienced a previous heart attack. (1)

“A selected mind-body intervention, the TM program, significantly reduced risk for mortality, myocardial infarction, and stroke in coronary heart disease patients. These changes were associated with lower blood pressure and psychosocial stress factors. Therefore, this practice may be clinically useful in the secondary prevention of cardiovascular disease.”

This degree of protection exceeds the benefits of statin drugs in patients who have had a heart attack  and exceeds the risk reduction accomplished by cardiac rehabilitation exercise programs.

A review of studies on the effects of meditation on cardiovascular disease reported: (2)

Psychosocial stress is a nontraditional risk factor for cardiovascular morbidity and mortality that may respond to behavioral or psychosocial interventions. …. Randomized controlled trials, meta-analyses, and other controlled studies indicate this meditation technique reduces risk factors and can slow or reverse the progression of pathophysiological changes underlying cardiovascular disease. Studies with this technique have revealed reductions in blood pressure, carotid artery intima-media thickness, myocardial ischemia, left ventricular hypertrophy, mortality, and other relevant outcomes. The magnitudes of these effects compare favorably with those of conventional interventions for secondary prevention

Dr. Dean Ornish utilized both meditation and yoga training in his lifestyle intervention program along with moderate exercise, smoke cessation and elimination of junk food (low fat vegan diet). The results demonstrated reduced coronary artery plaque within 2 years. Although many have attributed this to the vegan low fat diet, I have suggested in the past that the beneficial results were accomplished by stress reduction, exercise, smoke cessation, and elimination of junk food (especially refined sugar, flour, trans-fats and refined vegetable oils)

Our culture is not attuned to the regular practice of meditation or yoga. When I recommend stress reduction with these techniques to my patients few pursue it despite providing them with detailed descriptions of the physical benefits demonstrated by medical studies. One does not need to become a Buddhist in order to benefit from the practice of meditation. In the early 1970s the first stress reduction clinic utilizing MBSR(Mindfulness Based Stress Reduction) and Yoga was established at the University of Massachusetts Medical Center by Jon Kabat Zinn PhD. Since then many studies have documented the benefits of stress reduction relative to cardiovascular disease, diabetes, hypertension, chronic pain management, depression and anxiety.

Patients who have experienced their first major depressive episode can reduce the risk of a subsequent major depressive episode by 50% simply practicing MBSR regularly.

Unlike drugs, angioplasty, coronary stents, surgery, and injections, meditation and yoga have no potential negative side effects or complications. They simply require time, practice and a modest amount of training. Inexpensive self-help books, CDs and on-line resources are available to get started. Measurable physiologic benefits are experienced within a few weeks. Blood pressure drops, stress hormones decrease, blood sugars come down, insulin sensitivity improves, immune cells work better, sleep improves, suffering from chronic pain decreases, and functional status improves. That’s a considerable amount of benefit achieved by simply sitting quietly and observing your breath as it moves in and out of your body.

Meditation and yoga are two ways to reduce stress. For a healthy life to achieve stress reduction we must examine many areas. What aspects of daily life can increase and decrease stress and our physiologic response to stress?

Important factors to consider include social isolation, physical and social contact with friends/family/pets, meaningful work, laughter and humor, time spent outdoors, exercise, proper sleep habits and exposure to natural rather than artificial light. These all play significant roles in governing our stress levels, physiologic response to stress and the attendant changes in health.

Social isolation is harmful while regular contact with family and friends is beneficial. Caring for a pet seems to reduce blood pressure and enhance longevity. Engaging in meaningful work for pay or as a volunteer is essential for health, longevity and happiness. Spending time outdoors regularly and cycling your daily activity with the sun (circadian rhythm normalization) are essential to health and stress reduction. Laughter and social interaction provide healing while rumination over problems causes illness. All of these aspects to healthy living deserve attention but if you are ill, overweight, suffer chronic pain, disability or substance abuse then meditation and yoga can have profoundly beneficial effects. When combined with a Paleolithic diet and adequate restorative sleep, stress reduction techniques provide a powerful healing pathway.

Below is a long list of links to articles related to stress reduction, meditation, and yoga in the areas of chronic pain, cardiovascular disease, cancer, pre-natal care, anxiety disorders, depression, insomnia, smoke cessation, burnout, immune function, inflammation, migraine, blood pressure control, traumatic brain injury and even psoriasis.

Read to your heart’s content.

Bob Hansen MD

(1) Stress reduction in the secondary prevention of cardiovascular disease: randomized, controlled trial of transcendental meditation and health education in Blacks.

(2) Psychosocial stress and cardiovascular disease Part 2: effectiveness of the Transcendental Meditation program in treatment and prevention.

Here is the long list of other references. I have tried to group them in categories. There is allot of overlap between categories so my classification is somewhat arbitrary.

Asthma

Yoga intervention for adults with mild-to-moderate asthma: a pilot study.

Cardiovascular Disease:

Stress reduction in the secondary prevention of cardiovascular disease: randomized, controlled trial of transcendental meditation and health education in Blacks.

Usefulness of the transcendental meditation pro… [Am J Cardiol. 1996] – PubMed – NCBI

A randomised controlled trial of stress reduction for hypertension in older African Americans.

Effect of meditation on endothelial function in Black Americans with metabolic syndrome: a randomized trial.

Is there a role for stress management in reducing hypertension in African Americans?

Trial of stress reduction for hypertension in older African Americans. II. Sex and risk subgroup analysis.

Yoga for the primary prevention of cardiovascular disease.

Randomized controlled trial of mindfulness-based stress reduction for prehypertension.

Yoga Nidra relaxation increases heart rate variability and is unaffected by a prior bout of Hatha yoga.

Influence of psychosocial factors and biopsychosocial interventions on outcomes after myocardial infarction.

Influence of psychosocial factors and biopsychosocial interventions on outcomes after myocardial infarction.

Trial of relaxation in reducing coronary risk: four year follow up.

When and why do heart attacks occur? Cardiovascular triggers and their potential role.

Emotional stressors trigger cardiovascular events.

How brain influences neuro-cardiovascular dysfunction.

CNS effects:

Short-term meditation training improves attention and self-regulation

Central and autonomic nervous system interaction is altered by short-term meditation

Neruoimaging and EEG

Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies.

Short-term meditation induces white matter changes in the anterior cingulate

Mechanisms of white matter changes induced by meditation

Meditation’s impact on default mode network and hippocampus in mild cognitive impairment: a pilot study.

Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation.

Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex.

Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex.

Cancer:

Increased mindfulness is related to improved stress and mood following participation in a mindfulness-based stress reduction program in individuals with cancer.

Impact of Mindfulness-Based Stress Reduction (MBSR) on attention, rumination and resting blood pressure in women with cancer: a waitlist-controlled study.

A non-randomized comparison of mindfulness-based stress reduction and healing arts programs for facilitating post-traumatic growth and spirituality in cancer outpatients.

One year pre-post intervention follow-up of psychological, immune, endocrine and blood pressure outcomes of mindfulness-based stress reduction (MBSR) in breast and prostate cancer outpatients.

Impact of mindfulness-based stress reduction (MBSR) on sleep, mood, stress and fatigue symptoms in cancer outpatients.

Keeping the balance–an overview of mind-body therapies in pediatric oncology.

Randomised controlled trials of yoga interventions for women with breast cancer: a systematic literature review.

Mindfulness-based stress reduction in relation to quality of life, mood, symptoms of stress and levels of cortisol, dehydroepiandrosterone sulfate (DHEAS) and melatonin in breast and prostate cancer outpatients.

A pilot study evaluating the effect of mindfulness-based stress reduction on psychological status, physical status, salivary cortisol, and interleukin-6 among advanced-stage cancer patients and their caregivers.

Can diet in conjunction with stress reduction affect the rate of increase in prostate specific antigen after biochemical recurrence of prostate cancer?

Meditation, melatonin and breast/prostate cancer: hypothesis and preliminary data.

Diabetes

Mindfulness-based stress reduction is associated with improved glycemic control in type 2 diabetes mellitus: a pilot study.

Immune System:

Alterations in brain and immune function produced by mindfulness meditation.

Insomnia and Sleep Physiology.

Mind-body interventions for the treatment of insomnia: a review.

Mindfulness-based stress reduction compared with cognitive behavioral therapy for the treatment of insomnia comorbid with cancer: a randomized, partially blinded, noninferiority trial.

Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

I-CAN SLEEP: rationale and design of a non-inferiority RCT of Mindfulness-based Stress Reduction and Cognitive Behavioral Therapy for the treatment of Insomnia in CANcer survivors.

New insights into circadian aspects of health and disease.

Irritable Bowel

Mindfulness-based stress reduction for the treatment of irritable bowel syndrome symptoms: a randomized wait-list controlled trial.

 

Pain:

A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation.

The validation of an active control intervention for Mindfulness Based Stress Reduction (MBSR).

[Mindfulness-based therapeutic approaches: benefits for individuals suffering from pain].

Mindfulness-based stress reduction, mindfulness-based cognitive therapy, and Zen meditation for depression, anxiety, pain, and psychological distress.

Mindfulness starts with the body: somatos… [Front Hum Neurosci. 2013] – PubMed – NCBI

Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators.

Differential effects on pain intensity and unpleasantness of two meditation practices.

Self-directed Mindfulness Training and Improvement in Blood Pressure, Migraine Frequency, and Quality of Life.

Effectiveness of mindfulness meditation (Vipassana) in the management of chronic low back pain.

Mindfulness meditation in the control of severe headache.

The clinical use of mindfulness meditation for the self-regulation of chronic pain.

An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: theoretical considerations and preliminary results.

Mindfulness-based stress reduction for chronic pain conditions: variation in treatment outcomes and role of home meditation practice.

Psych, Depression, Anxiety, Burnout, Students

Mindfulness meditation practices as adjunctive treatments for psychiatric disorders.

Reducing psychological distress and obesity through Yoga practice

Yoga and social support reduce prenatal depression, anxiety and cortisol.

Meditation Programs for Psychological Stress and Well-Being [Internet].

Meditation programs for psychological stress and well-being: a systematic review and meta-analysis.

Tai chi training reduces self-report of inattention in healthy young adults.

Mindfulness for teachers: A pilot study to assess effects on stress, burnout and teaching efficacy.

Mindfulness-Based Stress Reduction for Low-Income, Predominantly African American Women With PTSD and a History of Intimate Partner Violence.

Mindfulness-based cognitive therapy for generalized anxiety disorder.

Three-year follow-up and clinical implications of a mindfulness meditation-based stress reduction intervention in the treatment of anxiety disorders.

Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders.

Enhanced response inhibition during intensive meditation training predicts improvements in self-reported adaptive socioemotional functioning.

Intensive meditation training improves perceptual discrimination and sustained attention.

Home-based deep breathing for depression in patients with coronary heart disease: a randomised controlled trial.

Mindfulness-based stress reduction lowers psychological distress in medical students.

Yoga and exercise for symptoms of depression and anxiety in people with poststroke disability: a randomized, controlled pilot trial.

The effect of yoga on coping strategies among intensive care unit nurses.

Mindfulness-based stress reduction and health-related quality of life in a heterogeneous patient population.

Developing mindfulness in college students through movement-based courses: effects on self-regulatory self-efficacy, mood, stress, and sleep quality.

Differential effects of mindful breathing, progressive muscle relaxation, and loving-kindness meditation on decentering and negative reactions to repetitive thoughts.

Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability.

A narrative review of yoga and mindfulness as complementary therapies for addiction.

The acute effects of yogic breathing exercises on craving and withdrawal symptoms in abstaining smokers.

Yoga and massage therapy reduce prenatal depression and prematurity.

Mind-body interventions during pregnancy for preventing or treating women’s anxiety.

Misc. and General

Mindfulness-based interventions for physical conditions: a narrative review evaluating levels of evidence.

Evaluation of a Mindfulness-Based Stress Reduction (MBSR) program for caregivers of children with chronic conditions.

Empirical explorations of mindfulness: conceptual and methodological conundrums.

Mindfulness meditation: do-it-yourself medicalization of every moment.

Becoming conscious: the science of mindfulness.

Meditate to medicate.

Mindfulness in medicine.

Cultivating mindfulness: effects on well-being.

Mind-body medicine. An introduction and review of the literature.

Tai chi chuan in medicine and health promotion.

Tai chi/yoga effects on anxiety, heartrate, EEG and math computations.

Mindfulness Research Update: 2008.

Development and preliminary evaluation of a telephone-based mindfulness training intervention for survivors of critical illness.

A randomized controlled trial of Koru: a mindfulness program for college students and other emerging adults.

Hair Cortisol as a Biomarker of Stress in Mindfulness Training for Smokers.

A review of the literature examining the physiological processes underlying the therapeutic benefits of Hatha yoga.

Body Awareness: a phenomenological inquiry into the common ground of mind-body therapies.

Cortical dynamics as a therapeutic mechanism for touch healing.

Establishing key components of yoga interventions for musculoskeletal conditions: a Delphi survey.

Hatha yoga on body balance.

Yoga might be an alternative training for the quality of life and balance in postmenopausal osteoporosis.

Becoming conscious: the science of mindfulness.

Organ Transplant

Mindfulness meditation to reduce symptoms after organ transplant: a pilot study.

Post Traumatic Brain Injury

A pilot study examining the effect of mindfulness-based stress reduction on symptoms of chronic mild traumatic brain injury/postconcussive syndrome.

Psoriasis

Influence of a mindfulness meditation-based stress reduction intervention on rates of skin clearing in patients with moderate to severe psoriasis undergoing phototherapy (UVB) and photochemotherapy (PUVA).

Telemorase, DNA, Genes

Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators.

Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres.

Intensive meditation training, immune cell telomerase activity, and psychological mediators.

Contemplative practice, chronic fatigue, and telomerase activity: a comment on Ho et al.

Toward a unified field of study: longevity, regeneration, and protection of health through meditation and related practices.

 

Lose weight, control blood sugar, reduce inflammation

The Duke University Lifestyle Medicine Clinic prescribes a nutritional program based upon a very simple concept, limit carbohydrate intake and multiple problems improve. This approach is so powerful in controlling blood sugar that diabetic patients must reduce their medication  before adopting the nutritional program in order to avoid very low blood sugars.

Compared to a low-fat diet weight loss approach, it is better or equal on every measurement studied. Here is what happens on the carbohydrate restricted program when compared to a low fat diet (American Heart Association diet). The carbohydrate restricted diet results in

  • Greater reduction in weight and body fat
  • Greater reduction in fasting blood sugar
  • Reduction in the amount of saturated fat circulating in the blood despite a higher intake than a low fat diet
  • Greater reduction in insulin with improved insulin sensitivity
  • Reduction in small LDL (low fat diets increase small LDL which is considered to be associated with more heart attacks and strokes)
  • Increase in HDL (low fat diets decrease HDL, decreased HDL is associated with increased risk of heart attack and stroke)
  • Greater reduction in Triglycerides
  • Reduction in the ApoB/ApoA-1 ratio (low fat diets do the opposite, and the opposite is considered to increase risk of heart attack and stroke).
  • Reduction in multiple markers of inflammation
  • Spontaneous reduction in caloric consumption without counting or restricting calories (people automatically eat less as a result of restricting carbohydrates, low-fat diets require counting and restricting calories in order to lose weight)
  • Increased consumption of non-starchy vegetables

All of these beneficial effects are accepted by the medical community as reducing cardiovascular risk .

The improved metabolic outcome can occur even without weight loss simply by substituting fat for carbohydrate.

“The key principle is that carbohydrate, directly or indirectly through the effect of insulin, controls the disposition of excess dietary nutrients. Dietary carbohydrate modulates lipolysis, lipoprotein assembly and processing and affects the relation between dietary intake of saturated fat intake and circulating levels.” see here

Yet despite these proven effects, the proponents of low-fat diets refer to the carbohydrate restriction approach as a “fad diet”. In his excellent discussion of this term, Richard Feinman points out that historically, a carbohydrate restriction approach is actually the longest standing and proven approach to the treatment of obesity compared to a low-fat diet which is a relative newcomer. He describes how a low-fat diet more closely meets the dictionary’s definition of a “fad”.

Multiple Studies have compared carbohydrate restriction to low fat diet approaches and the results are consistent. In addition to the advantages cited above, carbohydrate restricted approaches when compared to low-fat diets reveal that symptoms of  “negative affect and hunger improved to a greater degree” compared with those following a low fat diet”. (see here)

When one analyzes the carbohydrate restricted diet (CRD) approach employed by many centers, including the Duke Interventional Medicine Clinic, one finds great similarity to a paleolithic diet.

They both eliminate or dramatically reduce

  • sugar-sweetened foods and beverages,
  • grains, flour foods and cereal foods
  • legumes (paleo completely, CRD to a large extent)
  • processed-refined vegetable oils
  • dairy (paleo completely, CRD to a large extent)

Fruits under a CRD are limited to small amounts of berries initially and this is liberalized over time as weight loss is achieved and metabolic parameters are improved. This is consistent with a paleolithic approach that recognizes that fruits and vegetables grown today have been bred to provide much higher sugar and starch content compared to the pre-agricultural  fruits and vegetables that early hominids consumed for hundreds of thousands of years.

A carbohydrate restricted nutritional approach to treat obesity, diabetes, or metabolic syndrome appears to be a valid and arguably superior remedy to a growing problem in the developed world. Yet despite this strong and convincing scientific data, dietary fat-phobia has impaired the utilization of this proven therapeutic modality.

Peace,

Bob Hansen M.D.