Tag Archives: American Heart Association

Fred Kummerow, PhD, fought the battle against Trans Fats for over 50 years.

Professor Fred Kummerow passed away on May 31 at his home in Urbana, Ill at age 102. He ate butter, red meat and eggs cooked in butter, along with plenty of fruits and vegetables. He avoided margarine, french fries and other fried foods, along with cookies, cake and crackers which contained artificial trans-fats. He conducted research in his nutrition science laboratory at the University of Illinois up until his death. he authored the book Cholesterol Won’t Kill You, But Trans Fat Could: Separating Scientific Fact from Nutritional Fiction in What You Eat

Fred warned the American public and scientists in the 1950s about the dangers of artificial man-made trans fats. His research was largely ignored and criticized by the food industry and by scientists who were funded by the food industry for decades. Despite mounting evidence in both animals and humans that artificial trans fats dramatically increased the risk of heart attacks, strokes, peripheral vascular disease, diabetes, obesity, and probably several forms of cancer, the FDA ignored his pleas to address the issue. In 2009 Professor Kummerow filed a petition with the FDA to ban the use of trans fats. Although federal law required that the FDA respond within 180 days to such a petition, the FDA remained silent. In 2013, approaching the age of 99, Professor Kummerow sued the FDA. Two years latter in 2015 the FDA declared that artificial trans-fats were unsafe and should be eliminated from the US food supply by 2018.

Through his lifelong work, Professor Kummerow has produced a policy change that will likely save hundreds of thousands of lives.

What are trans fats and why have they been in our food for 7 decades?

Although there are some forms of natural trans fats which are safe for consumption when consumed in whole foods, artificial trans-fats are produced by placing unsaturated fat (such as corn oil, soy oil) under high pressure and high temperature conditions and adding hydrogen in the presence of a metal catalyst. These fats were introduced to many American foods because they dramatically extend the shelf life of foods and give a pleasant mouth texture to a variety of processed foods. They remain in many foods still on the shelves today. You cannot rely on labels such as “NO TRANS FATS” OR “TRANS FAT FREE” because food companies are allowed to make this statement as long as the amount of trans fats does not exceed 0.5 grams per serving. No amount is safe!

The Institute of Medicine, on July 10, 2002 declared manufactured trans fatty acid (TFA) a serious danger to the health of our nation with a: “tolerable upper intake level of zero.”  This means there is no safe level of consumption. Despite that strong statement in 2002, it has taken the efforts of an elderly professor, including a lawsuit, to bring the FDA around to finally address the issue.

But it is not over yet, you can bet that the food industry will try to delay the implementation of the ban or possibly even argue against the overwhelming science that supports such a ban.

In the meantime read labels. If any food item contains “partially hydrogenated” oil of any kind or “hydrogenated oil” of any kind it contains trans fats. These foods are typically foods you should not be eating any way because they usually also contain added sugar, refined flour and/or refined easily oxidized inflammatory “vegetable” oils. They are not whole foods and therefore should not be consumed for many reasons. But if you want to eat cake, cookies, crackers, bread, or any other processed foods, beware and read the ingredients so as to at least avoid trans-fats.

You can read about Fred Kummerow, his life and research at these sites:

Fred A. Kummerow, scientist who raised early warnings about trans fats, dies at 102 – The Washington Post

Fred A. Kummerow, an Early Opponent of Trans Fats, Dies at 102 – The New York Times

Fred Kummerow, U. of I. professor who fought against trans fats, dies at 102 – Chicago Tribune

Fred also studied the effects of a oxysterols and oxidized low-density lipoprotein (OxLDL) both of which contribute to atherosclerosis.  In a  2013 publication Professor Kummerow stated

“levels of oxysterols and OxLDL increase primarily as a result of three diet or lifestyle factors: the consumption of oxysterols from commercially fried foods such as fried chicken, fish and french fries; oxidation of cholesterol in vivo driven by the consumption of excess polyunsaturated fatty acids from vegetable oils; and cigarette smoking.”

Yet the American Heart Association continues to recommend increased consumption of polyunsaturated fats from the likes of corn oil, soy oil, cottonseed and similar oils. I have discussed the problems with that advice here and here.

So the next time you avoid trans fats by reading food labels, think of Professor Kummerow who brought light to some very dark areas in the history of nutrition and food in the US.

Eat clean, live clean, and enjoy.

Dr. Bob

The Obesity Code, a must read book by Dr. Jason Fung.

Doctor Jason Fung just published a terrific book titled The Obesity Code: Unlocking the Secrets of Weight Loss: 

Dr. Fung’s genius excels at simple, direct explanations with clarity and humor. His analogies are often hilarious and through his humor and logic he communicates simple but important truths. The major message is that obesity is a hormonal problem. Obesity is not a disease of excess caloric intake, nor is it a disease of sedentary lifestyle. Dr. Fung cites study after study in which obese patients (young and old alike) consumed less calories and exercised more with dismal results. He reviews the medical literature on the effects of refined carbohydrates and sugar on insulin and other hormones. He explains how sustained high insulin levels cause insulin resistance and weight gain. He clearly and decisively explains how 100 calories of sugar or flour effects the human body in a manner immensely different from 100 calories of broccoli.

“Have you ever seen anyone get fat from eating too much broccoli?”

Most importantly, Dr. Fung provides the solution that has helped hundreds of his patients. The solution is elimination of refined carbohydrates and sugar in combination with intermittent fasting. Intermittent fasting (consuming only water, coffee, tea, broth) for 24 -36 hours a few to several times per month helps to reset the brain’s set point for body weight. When combined with restriction of sugar and refined carbohydrate (foods made with flour) intermittent fasting presents a powerful tool to not only lose weight but to manage diabetes and prevent the many complications of obesity and diabetes.

Intermittent fasting increases the human metabolic rate, Your body actually burns more calories at rest per hour during fasting. The effects of intermittent fasting are distinctly different from what has been referred to as the “starvation response”. The “starvation response” ironically and confusingly refers to human studies that restricted (reduced) caloric intake but continued low calorie meals throughout the day.  It is unfortunate that those studies coined the term “starvation response” which is a decrease in resting metabolic rate. Caloric restriction diets reduce the human metabolic rate and therein lies the cause for the failure of all caloric restriction diets.

The confusion of these two approaches and their effects on human metabolism have clouded the discussion of obesity for decades.

Dr. Fung’s communication skills can be enjoyed by reading his book and viewing his many talks on YouTube.

His book and lectures should be mandatory for every medical student, physician, nutritionist and public health official. His book’s exhaustive medical references document the science that supports his theory and his clinical solution.

So take a leap, click on the link above for his book and the links below for some of his videos which are free on-line.

I think that Dr. Fung’s book is the most important book published on this topic in the 21st Century. His work will have profound influence during the next few decades. I encourage you to enjoy his genius.

Bob Hansen MD

Why do our tax dollars continue to subsidize death, disability and disease?

Yesterday I posted a comment on Medscape after reading an article Longtime Dietary Fat Advice Unsupported by Data: Analysis . Medscape is a website with articles and news written for physicians and other health professionals. Anyone can access this information by creating a user name and password, there is no fee.

Here is my comment. It is long and technical. I will provide an explanation in lay terms after quoting myself.

Sugar, especially HFCS (high fructose corn syrup), used in so many foods is more inflammatory than saturated fat. Grass fed meat from ruminants has a fatty acid mix that is exactly the same as wild game, which we evolved to eat, along with tubers, green leafy vegetables, and fruit in season. Excess refined fructose intake AND use of modern refined “vegetable oils” along with non-healthy grains combine to cause excess caloric intake, NAFLD (non-alcoholic fatty liver disease), obesity, metabolic syndrome and CAD (coronary artery disease). N6 PUFA (omega six polyunsaturated fatty acids) are easily oxidized. N3 PUFA (omega 3 fatty acids) despite greater number of double bonds are protected from oxidation in cell and Lipoprotein membranes by plasmalogens as opposed to linoleic acid which is not easily  incorporated into plasmalogens. The PUFA in vegetable oils (linoleic acid) is the FA (fatty acid) that is oxidized on LDL particles and remnant particles, stimulating monocytes to transform to macrophages and then foam cells. The USDA, ADA and AHA have had it upside down for decades and they still fail to admit folly. We evolved for > 1 million years without grains and they have contributed to disease. Per calorie fresh vegetables have five times the amount of fiber compared to whole grains. We do not need grains and would be better without them. They contain anti-nutrients and wheat, hybridized in the 1980s to a storm resistant dwarf plant, now has 50 times more gluten/gliadin than the old wheat. This has generated more gluten intolerance and celiac. Our greatest nutritional threats to public health include refined sugar, carbohydrates predominantly from grains and refined vegetable oils. Vegetable oils are not healthy, we did not evolve to eat them. N3 FAs are anti-inflammatory but have been competing in our diets with a sea of inflammatory N6 PUFA from unnatural refined and easily oxidized “vegetable oils”. Even though PUFA can reduce LDL-C they wreak havoc by creating ox-LDL particles which initiate the cascade of atherosclerosis. Substituting SFA (saturated fatty acids) with PUFA results in increased levels of Lp(a) and oxLDL in humans, not a good thing. Close the feed lots, stop government subsidy of corn, wheat, dairy and soy, eat meat from grass fed ruminants, wild seafood, fresh organic vegetables and fruits in season. Nibble on tree nuts. Stop creating carcinogens with high dry heat cooking methods and we will watch obesity, insulin resistance, metabolic syndrome and atherosclerosis melt away.

That was my comment. Here is some explanation.

I have previously discussed the pro-inflammatory nature of refined “vegetable oils”. “Vegetable oils” are actually not from vegetables, they are from grains, seeds and legumes. The two major sources of excess omega six polyunsaturated fats in the American diet are corn oil and soy oil marketed by various brand names such as Wesson. They are major components of margarine and other butter substitutes and are present in most salad dressings. Most salad dressings sold in our supermarkets contain high levels of easily oxidized unhealthy refined “vegetable oils” and HFCS. The use of these salad dressings converts a healthy salad into a vector for disease.

The major source of caloric sweeteners in our food and beverages is high fructose corn syrup. Both corn (oil and sugar) and soy predominate our processed food supply because they are cheap. They are cheap because our tax dollars subsidize their production. This subsidy started during the Nixon administration. Once a food subsidy is put in place it is very difficult to eliminate, Big Agriculture provides a deep pocket for lobby money and our elected officials from the mid-west bread-basket respond to $$.

Another major source of disease causing elements in the standard American diet is highly refined flour from wheat. Doctors Davis and Perlmutter discuss the problems associated with wheat-flour foods in their books Wheat Belly and Grain Brain respectively. The production of wheat has also been subsidized since the Nixon administration.

Wheat is not what it used to be. A new dwarf hybrid wheat has predominated the US market since the 1980s. Bread and pasta are not what they used to be when great grand-mother made her own bread and pasta in the kitchen from coarsely ground whole flour. But even if we all went back to making our own whole-grain bread and pasta from locally ground pre-1980s wheat, bread, pasta and pastry would still present a health risk because of issues related to intestinal permeability, auto-immune disease (now epidemic in the USA), and the presence of nasty lectins and phytates (discussed in my manifesto and previous posts).

The Medscape comment quoted above describes  adverse consequences caused by replacing saturated fat in the diet with “vegetable oils”. This is a complex subject and I will try to be brief for now but promise to expand on this in a future post.

Many factors contribute to atherosclerosis, heart attack and stroke. Sedentary lifestyle, stress, inadequate restorative sleep, smoking and poor dietary choices top the list. These factors also contribute to obesity, diabetes, metabolic syndrome, insulin resistance and many cancers.

DIETARY FACTORS:

The combination of sugared foods and beverages (predominantly sweetened with HFCS), refined flour foods, and excess consumption of the PUFA in “vegetable oils” TOGETHER  contribute to the formation of plaque in the walls of our arteries (atherosclerosis).

How does this happen?

LDL (low density lipoprotein) is a particle that transports cholesterol and triglycerides through our blood to our organs. This particle is comprised of a core and a surrounding membrane.  Here is a picture.

LDL 2

The core contains cholesterol in a storage form (esters) and triglycerides. The outer membrane includes a large protein called apoprotein B-100, “free” cholesterol molecules and phospholipids. The phospholipids contain fatty acids, including PUFA.

LDL has been demonized as “the bad cholesterol” and that demonization has mislead the public.

hdl_ldl good guy bad guy

LDL is the major lipoprotein in our blood but there are others that have different names.

Cholesterol is cholesterol, whether it is carried in LDL or HDL. When carried in the core of a lipoprotein it is carried as a cholesterol ester. 80% of the cholesterol in an LDL particle is carried as an ester in the core. 20% is carried as “free” cholesterol on the outer surface or membrane.

LDLand cholesterol molecule

HDL (high density lipoprotein) is smaller and denser. HDL has been called “the good cholesterol”, another misnomer.

HDL particles, when they are functioning correctly can protect us from atherosclerosis but in patients with diabetes, obesity, and insulin resistance, HDL particles do not function well and in fact probably contribute to disease. (More about that in a future post)

But back to LDL.

Although the risk of cardiovascular disease is correlated with the amount of cholesterol carried by LDL in our blood (referred to as LDL-C), the total amount of cholesterol shuttled by LDL particles is much less relevant than one would be led to believe given the great use of statin drugs to lower LDL-C.

The short version is as follows.

Compared to LDL-C, a much better predictor of cardiovascular disease is the amount of “modified” LDL particles circulating in the blood. Oxidized LDL particles are one form of “modified LDL”. LDL can also  be modified by excess blood sugar levels (especially from HFCS). This modification is referred to as glycosylated or glycated LDL. In this latter form of modification, the major protein on the outer membrane of the LDL particle (apo B 100 in the picture above) becomes attached to a sugar and the result is an LDL particle that is not easily cleared by normal processes. The modified LDL is not “recognized” by the LDL receptors that act as entry points into our cells for proper processing. The result is that the glycated LDL particles circulate longer and are more likely to use up their anti-oxidants (Vitamin E and  Co-enzyme Q 10).

As a result glycated LDL are more likely to become oxidized. That is not good because oxidized LDL sets up a cascade of unhealthy events.

The portion of the LDL particle that becomes oxidized is the fat (fatty acid) from “vegetable oil”, specifically the fatty acid called linoleic acid. This fatty acid has two double bonds making it more likely to be oxidized than for example oleic acid, the major fatty acid in extra virgin olive oil which has only one double bond.

The double bonds between the carbons in the fatty acids are unstable and easily oxidized. The single bonds in saturated fat do not get oxidized.

All other things being equal (and you will see that they are not), the more double bonds in a fatty acid the greater chance for oxidation.

Here is a picture showing the linoleic acid, also called linoleate, on the outer membrane of the LDL particle.

LDL with linoleate

And here is a picture that shows the phospholipids that contain the linoleic acid.

LDL 3

Let’s say it again. The fatty acid found in “vegetable” oil, linoleic acid, is easily oxidized because it has two double bonds.

Saturated fats are not oxidized because they contain no double bonds.

The part of the LDL particle that becomes oxidized is the fatty acid that comes from “vegetable oils”.

A particular kind of immune cell (white blood cells called monocytes) have  special receptors for oxidized LDL particles. When ox-LDL are “seen” by these monocytes, the monocytes become transformed into macrophages. Macrophages are designed to destroy bacteria that invade our bodies. The oxidized LDL particles resemble the structures of invading bacteria. The macrophages, with very specialized receptors for oxidized LDL, “swallow” the LDL particles and release toxic chemicals to destroy “the invader”.  The macrophages then become “foam cells” in the walls of our arteries, initiating the creation of plaque. Here is a picture.

ldl_mechanisms oxidation in vessel wall

This picture depicts the oxidation occurring in the wall of the artery after LDL particles have penetrated the wall. However LDL particles can and do become oxidized while still circulating in the blood and these oxidized particles can stimulate monocytes to transform into macrophages and gobble up the oxidized or modified LDL while these particles are still circulating in the blood.

How and whether unmodified LDL particles cross the wall of arteries into the “sub-endothelial” area remains an unsolved complex issue. The picture above implies that LDL particles simply move across the endothelial cells that line the wall of the artery but that is a presumption.

Clearly, macrophages that have “swallowed” modified LDL particles have mechanisms to work their way between the junctions formed by adjacent endothelial cells.

This is an important distinction because many cardiologists believe that what drives atherosclerosis is a mass effect. The greater the number of LDL particles, the more likely they are to cross the endothelial barrier, get oxidized and retained and start the process of plaque formation. However the process is much more complex and not clearly understood.

We do not yet know or understand completely the factors that influence the permeability of the endothelium to Lipoprotein particles. We do know that modified (oxidized and glycated LDL) disrupt the protective surface of endothelial cells which is called the glyocalyx. Other factors that disrupt the glyocalyx include high blood sugars, dramatic fluctuations in blood pressure (too high or too low), oxidative stress, infections, and circulating endotoxin (which is governed by intestinal permeability).

It is clear from several studies that modified (oxidized) LDL as a single variable predicts cardiovascular disease and heart attacks with much greater accuracy than LDL-C (total cholesterol content of LDL particles). It is also clear that monocyte receptors are specific for modified LDL and that the  process that initiates the cascade of events that leads to plaque formation involves the interaction between modified lipoprotein particles and the immune system (monocytes).

Now here is another twist.

Omega 3 fatty acids in fish oil are considered “heart healthy”. They help prevent heart attacks and strokes. They also decrease inflammation throughout the body thereby producing many health benefits.

BUT OMEGA 3 FAT HAS MORE DOUBLE BONDS THAN OMEGA 6 FAT (LINOLEIC ACID) YET THEY HELP PROTECT THE HEART. HOW CAN THAT BE?

How do they avoid contributing to atherosclerosis? Are they not even more readily oxidized than linoleic acid?

The simple answer is no.

The major reason is that the omega three fatty acids are protected by “plasmalogens” which are important components of our LDL particle outer membranes. Plasmalogens are found in the membranes of lipoprotein particles and in the membranes of human cells. Because of their chemical structures, omega three fats are easily incorporated into plasmalogens which protect the double bonds of omega three fats from oxidation. Linoleic acid, the predominant component of “vegetable oils” is not easily incorporated into the protective arms of plasmalogens.

This selective protection is well described on pages 141-142 of  “The Fats of Life”, written by Dr. Glen Lawrence and published in paperback in 2013. (link below)

I asked Dr. Lawrence about this issue in an email and here was his response.

“The omega-3 fatty acids are preferentially incorporated into plasmalogens, which act as antioxidants due to the double bond adjacent to the ether linkage of these phospholipids. This structure would tend to scavenge free radicals or reactive oxygen species near the surface of the membrane, rather than allowing them to penetrate deeper in the membrane where the double bonds of PUFA are located. This makes any polyunsaturated fatty acids attached to the plasmalogens more resistant to oxidation than they would be in a regular phospholipid. See pp 141-142 of The Fats of Life. The shorter chain and less unsaturated linoleic acid does not tend to be incorporated into plasmalogens.”

In summary:

  1. “Vegetable oil” is actually not oil from vegetables but rather a highly processed and refined oil. This oil contains primarily the easily oxidized omega 6 PUFA (polyunsaturated fatty acid) linoleic acid. Oxidation can occur during manufacture,  before consumption while sitting in the bottle, but especially during high heat cooking (fried foods). Oxidation can also in your body as this fat circulates in your blood on the membrane of lipoprotein particles.
  2.  LDL particles are the major lipoprotein particles that shuttle cholesterol and fatty acids (in in the form of triglycerides) through our bodies in our bloodstream.
  3. Modified LDL particles (glycated and/or oxidized LDL) stimulate monocytes (immune cells) to transform into macrophages and gobble up the modified LDL. In addition, glycated LDL particles are more easily oxidized because they circulate longer in our blood.
  4. Macrophages become filled with modified LDL. These are called foam cells. Foam cells  initiate a cascade of events that lead to the formation of plaque in the walls of our arteries.
  5. The part of the LDL particle membrane that becomes oxidized is the phospholipid that contains linoleic acid which comes from “vegetable oils”
  6. High amounts of sugar, especially HFCS, and highly refined flour foods in our diets cause larger blood sugar fluctuations than whole foods and therefore contribute to the glycation of LDL particles. This glycation leads to more oxidation of LDL. In this manner HFCS and refined flour foods contribute to the process of atherosclerosis.
  7. High amounts of sugar, HFCS and refined flour foods also contribute to obesity, insulin resistance and diabetes which then increase the risk of heart attack and stroke.
  8. Several factors contribute to the disruption of the glycocalyx which is the protective surface of the endothelial cells that line our arteries. These include but are not limited to modified LDL, inflammation, high blood sugars, abnormal fluctuations in blood pressure, circulating endotoxin (associated with increased intestinal permeability), infections. Disruption of the glycocalyx contributes to the formation of plaque (atherosclerosis).
  9. Modified LDL particles might also migrate through the junctions that connect adjacent endothelial cells either inside macrophages or on their own. Many factors, known and unknown likely determine the susceptibility or permeability of these junctions to this migration.

These are the major points, but there is allot more to discuss. Substituting “vegetable oils” for saturated fat in our diets not only increases the amount of oxidized LDL but also increases a dangerous lipoprotein called Lp(a). On third of Americans have an amount of Lp(a) that is considered “high risk” for heart attack and stroke. More about that in a future post.

Then there is the process of an actual heart attack or stroke which involves disruption of plaque and the creation of a blood clot that ultimately disrupts the flow of blood and the death of heart or brain tissue. The susceptibility of plaque to disruption is a huge topic that involves high blood pressure, diabetes, insulin resistance, oxidative stress, inadequate sleep, and stress to name a few. So much more to discuss.

But getting back to the title of this post, why don’t you ask your elected representatives why our tax dollars continue to subsidize nutritional root causes of death, disability and disease?

Here are some links to papers and books that support the discussion above.

Circulating Oxidized LDL Is a Useful Marker for Identifying Patients With Coronary Artery Disease

Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein.

Erythrocyte fatty acid profiles can predict acute non-fatal myocard… – PubMed – NCBI

Changes in Dietary Fat Intake Alter Plasma Levels of Oxidized Low-Density Lipoprotein and Lipoprotein(a)

Low-density lipoprotein subclass patterns and risk of myocardial in… – PubMed – NCBI

Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis

Oxidative susceptibility of low density lipoprotein subfractions is… – PubMed – NCBI

Effects of linoleate-enriched and oleate-enriched diets in combinat… – PubMed – NCBI

Enhanced oxidative susceptibility and reduced antioxidant content o… – PubMed – NCBI

Susceptibility of small, dense, low-density lipoproteins to oxidati… – PubMed – NCBI

Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions

Oxidized Lipoproteins Degrade the Endothelial Surface Layer

S1P Control of Endothelial Integrity

Mechanical control of the endothelial barrier. – PubMed – NCBI

Therole of actin-binding proteins in the control of endothelial bar… – PubMed – NCBI

The Fats of Life, Dr. Glen Lawrence

Functions of plasmalogen lipids in health and disease

Grain Brain: The Surprising Truth about Wheat, Carbs, and Sugar–Your Brain’s Silent Killers: David Perlmutter, Kristin Loberg: 9780316234801: Amazon.com: Books

Finally a quote from the Dali Lama (thanks to my cousin Diane for bringing this to my attention).

“Man. Because he sacrifices his health in order to make money. Then he sacrifices money to recuperate his health. And then he is so anxious about the future that he does not enjoy the present, the result being that he does not live in the present or the future, he lives as if he is never going to die, and dies having never really lived.”

Eat clean, live clean, sleep well, exercise wisely, rest often, enjoy the company of loved ones, spend time outdoors and live in the present.

BOB

Fat consumption, Fat circulating in your blood, Heart Disease

Another nail has been driven into the coffin of the diet-heart hypothesis. The Annals of Internal Medicine (the official journal for the American College of Physicians) just published a review article that considered three kinds of studies related to fat and heart disease. (1)

  1. Studies that evaluated the association between dietary consumption of different kinds of fat and cardiovascular disease (heart attack and stroke)
  2. Studies that evaluated the association between levels of different kinds of fat circulating in the blood and cardiovascular disease
  3. Studies that evaluated supplementation with various kinds of fat and cardiovascular disease.

Most importantly, the authors found no statistical association between consumption of saturated fat and cardiovascular disease. I have previously discussed another large meta-analysis published in 2010 with the same finding. (2)

I have discussed the unscientific demonization of saturated fat many times (3,4,5).

This is important because it again speaks against the dietary advice promulgated by the AHA and the USDA to reduce consumption of saturated fat. The low-fat advice has resulted in a proliferation of low-fat high-sugar and high-carbohydrate food products which arguably have contributed to the epidemics of obesity and diabetes in the US.

Similarly, recent studies have correlated dementia with high carbohydrate consumption. (6) If you reduce fat in the diet you must replace it with something else and unfortunately in the US that something else has been sugar and other refined carbohydrates.

Other statistically significant findings in the Annals of Internal Medicine study were an inverse relationship between circulating blood levels of the omega three fats found in seafood (EPA and DHA) and cardiovascular events. The authors pointed out that although higher blood levels of EPA and DHA were significantly associated with lower cardiovascular risk, supplementation with EPA and DHA have had mixed results  with many studies showing positive results but some showing no protective effects. My comments on the omega three supplement studies are

  1. supplementation with fish oil (omega three fats) will not benefit most individuals unless excess pro-inflammatory omega six fats (found in refined vegetable oils) are reduced/eliminated and that side of the equation has not been addressed in any of the published studies. In other words, the studies did not reduce omega 6 fats, they just supplemented with omega 3 fat. If an individual is consuming 30-60 grams of omega six fats per day, trying to balance that with 2-3 grams per day of fish oil will not achieve a healthy ratio.
  2. many of the fish oil (omega three) supplement studies used very low amounts of fish oil, well below the amounts used in the studies that demonstrated benefit.

I am not suggesting that everyone should take fish oil supplements. Instead, I support eating a whole foods paleolithic diet based on grass-fed meat, free range poultry, free range eggs, fresh wild seafood, fresh vegetables, fresh fruits and nuts.

Finally, the data on trans-fat consumption demonstrated statistically significant correlation with cardiovascular disease. The biochemistry and physiology of manufactured trans-fats demonstrate a disruptive role of these man-made fats and the elimination of these harmful fats from our food supply will likely provide great health benefits.

The authors comment on the complex relationship between fat consumption and circulating levels of specific fats in the blood as demonstrated by Forsythe et al. (6,7) I will discuss this in future posts. For now consider the paradox that high-fat carbohydrate restricted diets result in lower circulating levels of saturated fat compared to high carbohydrate diets. (6,7), Explanation: excess carbohydrates are immediately converted to fat and stored as saturated fat by humans.

1. Annals of Internal Medicine | Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk: A Systematic Review and Meta-analysis

2. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010; 91:535-46.
PubMed

3. https://practical-evolutionary-health.com/2014/02/16/can-goose-liver-grass-fed-meat-aged-hard-cheese-free-range-eggs-and-cod-liver-oil-prevent-a-heart-attack/

4. https://practical-evolutionary-health.com/2013/11/03/saturated-fat-vs-sugar/

5. https://practical-evolutionary-health.com/2013/11/01/saturated-fat-does-it-matter/

6. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. Journal of Alzheimers Dis. 2012;32(2):329-39. doi: 10.3233/JAD-2012-120862.

7. Forsythe CE, Phinney SD, Feinman RD, Volk BM, Freidenreich D, Quann E, et al. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet. Lipids. 2010; 45:947-62. PubMed

8. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008; 43:65-77. PubMed

Peace,

Bob Hansen MD

The Ornish Low Fat Vegetarian Diet, does it work?

Dr. Dean Ornish has done wonderful research in the area of cardiovascular disease and lifestyle intervention. His study on comprehensive lifestyle intervention (1) is often quoted to support a low fat vegetarian diet as treatment for cardiovascular disease. But his “Intensive lifestyle changes for reversal of coronary heart disease” included several components that would be expected to improve health and decrease cardiovascular risk independent of a vegetarian diet as will be discussed below.

Let’s review what this study did.

48 patients with diagnosed moderate to severe coronary artery disease were randomized to one of two treatment groups, an “intensive lifestyle change” (ILC) group or a “usual-care” (UC) control group. 28 patients were allocated randomly to the ILC group and 20 were allocated to the UC group. Out of 48 patients starting the study only 35 completed the study,   20 out of 28 in the ILC group completed the study and 15 out of 20 in the UC group completed the study.

The intensive lifestyle change group followed this program:

  • 10% fat whole foods vegetarian diet
  • daily aerobic exercise
  • stress management training (training in and daily performance of meditation and/or yoga)
  • smoke cessation (they quit smoking)
  • group psychosocial support (3 hour group therapy sessions)

At the start of the study only one patient in the ILC group was smoking and she quit. We do not know how many smokers were in the UC group or how many quit. (I consider that a deficiency of this study. Because smoking is such a significant determinant of cardiovascular outcome, details of smoking at start and end of the study for both groups should have been reported)

At the end of five years the intensive lifestyle change group demonstrated an average 3.1% absolute reduction in the coronary artery blockage as measured by coronary arteriograms (or to put it another way, the diameter of the blocked coronary arteries increased by 3.1%). The usual care group (receiving cholesterol lowering statin drugs) showed an average 2.3% absolute increase in the coronary artery blockage (2.3% reduction in diameter). These are not huge changes or differences but they were measurable and statistically significant.

Twenty five total  “cardiac events” occurred in the 28 patients randomized to the intensive lifestyle change group over the five years and 45 cardiac events occurred in the 20 patients randomized to the “usual care” group (receiving cholesterol lowering statin drugs). But this was due to differences in the number of hospitalizations and angioplasties. There was no statistically significant difference in the number of deaths, heart attacks or coronary artery bypass surgeries.

By the end of the study 2 patients in the ILC group had died compared to 1 death in the usual care group but as mentioned above, this difference was not statistically significant.  We do not know how many deaths occurred in the 8 patients who dropped out of the treatment group or in the 5 patients who dropped out of the usual care group, nor do we know any of the other outcomes for the drop-out patients.

So there were no lives saved by the intensive lifestyle change program and no reduction in the number of heart attacks. In fact the ILC group had 2 deaths compared to 1 in the usual care group.

What does this all mean and why has the Ornish Diet attracted so much attention.?

First, I would suggest that the demonstrated benefits (reductions in the number of angioplasties and hospitalizations) are likely explained by the following parts of the lifestyle changes.

  1. stress reduction training and implementation (meditation and yoga)
  2. elimination of manufactured trans-fats from the diet
  3. elimination of unhealthy pro-inflammatory excess omega six fats (vegetable oils) from the diet
  4. elimination/reduction of processed carbohydrates and sugar.

Although the intensive lifestyle intervention included regular exercise the data show no significant difference in times per week or hours per week of exercise at the end of the study between the two groups.

The big difference was in stress management. The ILC group averaged practicing meditation and/or yoga 5 times per week (48 minutes per day) versus less that once per week (8 minutes per day) in the usual care group.

Stress reduction is a major issue in any disease and in particular in cardiovascular disease.

Several studies have demonstrated that the daily practice of meditation  improves immune function, increases telomerase activity, reduces inflammatory markers, and reduces circulating stress hormones (cortisol and epinephrine) independent of dietary changes.
Meditation has also been observed to improve “endothelial function”, the ability of the cells that line arteries to respond to changes in demand. (2,3,4,5,6,7)

Here is a press release from the American Heart Association 13 November 2012. (8)

“African Americans with heart disease who practiced Transcendental Meditation regularly were 48 percent less likely to have a heart attack, stroke or die from all causes compared with African Americans who attended a health education class over more than five years, according to new research published in the American Heart Association journal Circulation: Cardiovascular Quality and Outcomes.

Those practicing meditation also lowered their blood pressure and reported less stress and anger. And the more regularly patients meditated, the greater their survival, said researchers who conducted the study at the Medical College of Wisconsin in Milwaukee.”

I believe the major benefit of the interventional program was from the stress reduction and the elimination of three major dietary sources of trouble (trans-fats, excess omega 6 fats from processed-refined vegetable oils, and refined carbohydrates-sugar)

I have already discussed in other posts the problems associated with excess omega 6 fats and refined carbohydrates-sugar relative to cardiovascular risk. (9,10,11)

There is little controversy that elimination/reduction in trans-fats produces benefit. (12,13,14)

All three of these changes were essential to the whole foods approach of the intervention group.

I have also discussed the lack of data to support the contention that saturated fat from animal sources of protein contributes to cardiovascular disease. (15, 16))

I remain a strong proponent of a whole foods diet that includes a variety and abundance of organic vegetables and fruits, nuts, pastured grass-fed meat, fresh wild seafood, free-range organic poultry and eggs from that kind of poultry.  This diet represents the foods we have evolved to eat, free from added sugar, hormones, antibiotics, pesticides. This dietary approach also produces a healthy balance of omega 6 to omega 3 fatty acid as well as a significant improvement in the ratio of potassium to sodium.

Stress reduction should be an essential part of our lives and data on this aspect of health will be discussed in future posts. References for this discussion appear below.

Peace,

BOB Hansen MD

REFERENCES:

1. JAMA Network | JAMA | Intensive Lifestyle Changes for Reversal of Coronary Heart Disease

2. Intensive meditation training, immune cell telomerase activity, and psychological mediators.

3. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres.

4. A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: effects on mental health, cognition, and telomerase activity.

5. Meditation Improves Endothelial Function in Metabolic Syndrome, American Psychosomatic Society (APS) 69th Annual Scientific Meeting: Abstract 1639. Presented March 10, 2011.

6. Alterations in brain and immune function produced by mindfulness meditation.

7. Adrenocortical activity during meditation.

8. Meditation may reduce death, heart attack and stroke in heart patients | American Heart Association

9. Polyunsaturated fat, Saturated fat and the AHA

10, Lose weight, control blood sugar, reduce inflammation

11. Sugar, a serious addiction

12. The negative effects of hydrogenated trans fats and what to do about them.

13. Trans fats in America: a review of their use… [J Am Diet Assoc. 2010] – PubMed – NCBI

14. FDA to Ban Trans Fats in Foods – US News and World Report

15. saturated fat | Practical Evolutionary Health

16. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease.

Addendum to lose weight, control blood sugar, decrease inflammation

To those of you who have subscribed to my blog by e-mail, I must apologize that I hit the “publish button” by mistake before I completed the finished article. So if you would like to read the full article, please go to the website for the updated and completed version.

Thanks

Bob Hansen MD

Lose weight, control blood sugar, reduce inflammation

The Duke University Lifestyle Medicine Clinic prescribes a nutritional program based upon a very simple concept, limit carbohydrate intake and multiple problems improve. This approach is so powerful in controlling blood sugar that diabetic patients must reduce their medication  before adopting the nutritional program in order to avoid very low blood sugars.

Compared to a low-fat diet weight loss approach, it is better or equal on every measurement studied. Here is what happens on the carbohydrate restricted program when compared to a low fat diet (American Heart Association diet). The carbohydrate restricted diet results in

  • Greater reduction in weight and body fat
  • Greater reduction in fasting blood sugar
  • Reduction in the amount of saturated fat circulating in the blood despite a higher intake than a low fat diet
  • Greater reduction in insulin with improved insulin sensitivity
  • Reduction in small LDL (low fat diets increase small LDL which is considered to be associated with more heart attacks and strokes)
  • Increase in HDL (low fat diets decrease HDL, decreased HDL is associated with increased risk of heart attack and stroke)
  • Greater reduction in Triglycerides
  • Reduction in the ApoB/ApoA-1 ratio (low fat diets do the opposite, and the opposite is considered to increase risk of heart attack and stroke).
  • Reduction in multiple markers of inflammation
  • Spontaneous reduction in caloric consumption without counting or restricting calories (people automatically eat less as a result of restricting carbohydrates, low-fat diets require counting and restricting calories in order to lose weight)
  • Increased consumption of non-starchy vegetables

All of these beneficial effects are accepted by the medical community as reducing cardiovascular risk .

The improved metabolic outcome can occur even without weight loss simply by substituting fat for carbohydrate.

“The key principle is that carbohydrate, directly or indirectly through the effect of insulin, controls the disposition of excess dietary nutrients. Dietary carbohydrate modulates lipolysis, lipoprotein assembly and processing and affects the relation between dietary intake of saturated fat intake and circulating levels.” see here

Yet despite these proven effects, the proponents of low-fat diets refer to the carbohydrate restriction approach as a “fad diet”. In his excellent discussion of this term, Richard Feinman points out that historically, a carbohydrate restriction approach is actually the longest standing and proven approach to the treatment of obesity compared to a low-fat diet which is a relative newcomer. He describes how a low-fat diet more closely meets the dictionary’s definition of a “fad”.

Multiple Studies have compared carbohydrate restriction to low fat diet approaches and the results are consistent. In addition to the advantages cited above, carbohydrate restricted approaches when compared to low-fat diets reveal that symptoms of  “negative affect and hunger improved to a greater degree” compared with those following a low fat diet”. (see here)

When one analyzes the carbohydrate restricted diet (CRD) approach employed by many centers, including the Duke Interventional Medicine Clinic, one finds great similarity to a paleolithic diet.

They both eliminate or dramatically reduce

  • sugar-sweetened foods and beverages,
  • grains, flour foods and cereal foods
  • legumes (paleo completely, CRD to a large extent)
  • processed-refined vegetable oils
  • dairy (paleo completely, CRD to a large extent)

Fruits under a CRD are limited to small amounts of berries initially and this is liberalized over time as weight loss is achieved and metabolic parameters are improved. This is consistent with a paleolithic approach that recognizes that fruits and vegetables grown today have been bred to provide much higher sugar and starch content compared to the pre-agricultural  fruits and vegetables that early hominids consumed for hundreds of thousands of years.

A carbohydrate restricted nutritional approach to treat obesity, diabetes, or metabolic syndrome appears to be a valid and arguably superior remedy to a growing problem in the developed world. Yet despite this strong and convincing scientific data, dietary fat-phobia has impaired the utilization of this proven therapeutic modality.

Peace,

Bob Hansen M.D.

Statin Guidelines, one step forward, two steps backwards

The new statin guidelines published jointly by the AHA (American Heart Association) and ACC (American College of Cardiology) present some good news but also allot of bad news.

The good news (one step forward) is that the guidelines acknowledge the following:

1. None of the cholesterol lowering drugs (except for statins) have ever demonstrated the ability to save lives by lowering cholesterol.

2. The ability of statin drugs to save lives (after a heart attack) is independent of whether and by how much the cholesterol is lowered.

This acknowledgement is very important because it sheds light on the fact that statins work primarily by effects independent of how much cholesterol is circulating in the blood. This is a fact that is not well understood by many physicians or patients. This fact will create some confusion because the American public has been misinformed for many years by physicians, the media and professional organizations all using terms like “good cholesterol” and “bad cholesterol”. These terms are meaningless, confusing, and counter-productive.

The new guidelines are two steps backwards for a few reasons:

1. They expand the number of patients under the guidelines in the US by tens of millions of people who will not benefit from their use and implementation of the guidelines will likely harm many.

2. The guidelines continue to assume and quote unrealistically low and inaccurate complication rates.

3. The risk assessment tool that accompanies the guidelines over-estimates risk for heart attack and stroke by 75-150%. This calculation of the over-estimate is based upon application of the guidelines to a huge database of real patients. This analysis has been published in a Peer Reviewed Journal and this analysis has already been discussed by the lay-press to the embarrassment of the AHA and ACC. This particular concern was communicated to the guideline committee one year ago by a prominent research cardiologist and statistician on the faculty of Harvard Medical School, but ignored by the guideline committee.

4. The guidelines have lowered the recommended 10 year  risk threshold for use of statins from the previous 10-20% level to a 7.5% level (thereby tremendously increasing the number of people who would be placed on statins). And since the risk calculator, as discussed in #3 above, greatly inflates the risk it essentially would apply the statin guidelines in reality to individuals with only a 3.75 to 4% risk of a cardiovascular event in the next 10 years. This shifts the risk/benefit ratio to a much higher level than the already high risk/benefit ratio of the previous guidelines.

Gratefully the excessive use of statins as well as the folly of the previous and new guidelines have  been brought to the public arena and the debate has finally drawn attention. Perhaps some reasonable discussion will ensue and perhaps the medical community at large will finally think about the bias represented in policy statements and guidelines as well as the bias presented in the many review articles that have been published on this topic.

Here are links to some reading of recent articles in the lay press.

Cholesterol Guidelines Under Attack – NYTimes.com

New Cholesterol Advice Startles Even Some Doctors – NYTimes.com

Risk Calculator for Cholesterol Appears Flawed – NYTimes.com

“After the guidelines were published, two Harvard Medical School professors identified flaws in the risk calculator that apparently had been discovered a year ago but were never fixed, as Gina Kolata reported in The Times on Monday.

In a commentary to be published Tuesday in The Lancet, a leading medical journal, the professors estimate that as many as half of the 33 million do not actually have risk thresholds exceeding the 7.5 percent level. Other experts who have tested the calculator found absurd results; even patients with healthy characteristics would be deemed candidates for statins.”

Be careful out there.

Peace,

Bob Hansen MD

Don’t Give More Patients Statins

On November 14, the following editorial was published in the New York Times.

Don’t Give More Patients Statins

By JOHN D. ABRAMSON and RITA F. REDBERG

New guidelines published on Tuesday of last week widely expand the category of who should take statins.

Two physicians authored the article providing an excellent analysis and warning against implementation of the new guidelines which are unfortunately and again, not based on sound evidence or reasonable analysis.

” based on the same data the new guidelines rely on, 140 people in this risk group would need to be treated with statins in order to prevent a single heart attack or stroke, without any overall reduction in death or serious illness.”

“At the same time, 18 percent or more of this group would experience side effects, including muscle pain or weakness, decreased cognitive function, increased risk of diabetes  (especially for women),  cataracts or sexual dysfunction.”

“We believe that the new guidelines are not adequately supported by objective data, and that statins should not be recommended for this vastly expanded class of healthy Americans. Instead of converting millions of people into statin customers, we should be focusing on the real factors that undeniably reduce the risk of heart disease: healthy diets, exercise and avoiding smoking. Patients should be skeptical about the guidelines, and have a meaningful dialogue with their doctors about statins, including what the evidence does and does not show, before deciding what is best for them.”

History repeats itself, soon the AHA and ACA will want statins in the water. The 18% estimate of serious side effects in my opinion is understated. Every week in the pain clinic I diagnose statin myopathy and/or cognitive impairment on at least one patient. Here are some stories about patients that appeared in the comments section of the oped on-line.

Noreen stated:

I am a victim of statin “therapy.” At the age of 72, with just a moderately high LDL, Simvastatin was prescribed. I took it for approximately 2 weeks, and severe pain developed in my whole body, but, primarily in my lower legs. I read the side effects on line and stopped taking it.
The pain went away, but my legs were weak. After much investigation by neurologists at University of California, SFMC, I was diagnosed with statin-induced neuropathy. The calf muscle in both legs has totally gone — nothing left but sinew. My life has been severely damaged by an inability to walk properly. I cannot raise on my toes. It has been three years since I took this medication, and there is no further hope of recovery. Prior to taking Simvastatin I was an athlete all my life. At the time of this pharmaceutical invasion I was still, hiking, exercising regularly and downhill skiing. Shame of this hired committee of “experts.”

Here is how a physician/patient described his experience.

I agree with Abramson and Redburg that treating a numbers instead of the patient is wrong. I am in a high risk group and I would hope to prevent another heart attack (I had one in 2009), yet I cannot take statins as I repeatedly developed muscle pain and then progressive weakness and loss of balance with all the statins I tried. My cardiologists (including Mayo physicians) and internists continued to push trying different statins and other cholesterol lowering medications even though I complained of side effects. Although some of my loss of power is due to aging and not statins, I used to be able to hike 10 to 20 miles with up to 5 to 6,000 feet elevation gain in a day before my statin era and now I can barely manage 4-5 miles at a slow pace. I’ve seen this in others taking statins. Even though the percentage who develop weakness may be low compared to the majority, it is a real debilitating effect for some. Doctors are brain washed (and the lay public too by TV and other ad bombardment), by the pharmaceutical industry to treat numbers rather than individuals. The result is the standard of care is now to treat the lab test instead of the person. Statins are dangerous medications and should not be prescribed lightly. SD Markowitz, MD

George from CA describes his experience as follows.

I had been on statins for over 15 years. Slowly, I began experiencing cognitive dysfunction, balance issues, muscle weakness, etc. even though I exercised both my body and brain. I quit several months ago and have been feeling better all around every day with improvement in every area. I’d rather die feeling good in 10 or 20 years than be miserable for however long this terrible medicine might extend my life.

JR Hoffman MD from Los Angeles provided further insight.

Congratulations to Drs Abramson and Redberg for their outstanding editorial, and to the NYT for having the courage to print it. As the authors note, this new guideline’s major beneficiary will be the pharmaceutical industry, while the American people will likely be its primary victim.

The British Medical Journal has recently printed a series of papers (disclosure — I co-authored one of those papers) addressing the biases and distortions that enter far too many published clinical guidelines, because a large majority of panel members and panel chairs have a financial conflict of interest, and because panels are stacked to support viewpoints reflecting those conflicts, independent of the evidence. This is particularly true of guidelines from prominent medical specialty societies … societies which themselves receive major financial support from industry. 

How many people targeted by the new guidelines would take one of these medicines if they were told that far more than 9 out of 10 (in fact probably more than 99%) would get no possible benefit whatever? And essentially none would get an overall reduction in major morbidity or mortality? And that this would come at a substantial cost in the side effects that a good many would suffer (not even considering the cost in dollars)?

If your physician tells you that you “need” a statin, please ask her for the details of how likely you as an individual are to benefit, and at what chance of harm.

Statin drugs interfere with the human production of many important substances. One of these is Coenzyme Q 10 also called uibiquinone. Co Q 10 functions as an important anti-oxidant and as an essential component of the apparatus inside every cell that produces ATP, the fundamental unit of energy that provides energy for every cellular function. Without ATP the cells in every organ shut down and cannot do any work.

Statin side effects can include not only muscle pain and weakness but also nerve damage, dementia, amnesia.  Shortness of breath can be the only symptoms when the muscles of respiration are affected.  Diabetes can be caused by any of the statin drugs and this can be permanent.  Rarely, statins can cause death . This happens when a massive amount of muscle damage causes a flood of debris that overwhelms the body’s ability to clear the debris. Damage to muscles and nerves can be permanent without any recovery after  the statin is stopped. A former astronaut and flight surgeon suffered transient global amnesia which fortunately cleared after stopping the statin drug. He has since published a few books about the dangers and inappropriate use of statins. Kidney failure requiring dialysis or kidney transplant is also a rare but potential result of statin medication.

Cardiologists and primary care physicians often ignore complaints about muscle pain, fatigue, weakness and forgetfulness in older patients and attribute it to old age. But even when these complaints are recognized as a side effect, rarely does a physician report it  to the FDA. As a result, post marketing surveillance data underestimates tremendously the frequency of side effects.

Be careful out there. Read my first post about statin medications. it provides risk-benefit data. Remember, we do not know with certainty the frequency of side effects and permanent damage, but you can be sure it happens more often than the drug company states. It happens more often than most physicians realize.

Peace

Bob Hansen MD

Polyunsaturated fat, Saturated fat and the AHA

The present paradigm among physicians and cardiologists presents saturated fat as a disease producing component of animal foods. Dietary recommendations include the reduction of saturated fat and replacement with carbohydrates and/or monounsaturated and polyunsaturated fats. In fact, the American Heart Association (AHA) updated its recommendations to increase the consumption of polyunsaturated fats as a percentage of total caloric intake in January 2009.

This was met by protests from three NIH scientists who had done extensive research in the area of fat consumption and health. Those scientists wrote letters to the editor of Circulation, the scientific journal of the AHA. Those protest letters were not published in print but were published on-line (where only geeks like me would find them,  the vast majority of physicians would never lay eyes on them)

The authors of those letters subsequently produced a brilliant study that involved forensic research. They conducted interviews with principal investigators who directed the studies upon which the AHA had based it’s recommendations. They discovered important data that had been collected but not mentioned in those study publications by painstakingly sleuthing multiple sources. They then produced a meta-analysis of the data from the studies. Their meta-analysis was published in the British Journal of Nutrition Dec 2010.

http://www.ncbi.nlm.nih.gov/pubmed/21118617

What they found was astonishing. The AHA had based it’s recommendations on faulty data. A major point of refutation involved  omega 3 fatty acids (fish oil which is arguably cardio- protective) vs omega 6 fatty acids. Both are poly-unsaturated fatty acids (PUFA). The AHA paradigm has been that replacing saturated fat with omega 6 PUFA results in reduction of cholesterol (short term studies) and therefore should reduce heart attacks and stroke. But the studies they used to support their recommendations were not “clean”.

Only three of the nine studies were “pure” omega 6 interventions, which increased omega-6 FA without a concurrent rise in omega-3.

Four of the studies increased both omega 3 and omega 6 PUFA. In one of those four studies the patients were given the equivalent of 16 fish oil capsules per day.

The control diets had an estimated 3% manufactured trans fats in the diet. This unquestionably increases risk of heart attack and creates a confounding factor.

The Omega 6 diets increased the risk of heart disease and death compared to the mixed omega 3 and omega 6 studies. The risk of cardiac death was increased by 28% in the omega 6 diets compared to the mixed diets.

The mixed omega 6 omega 3 diets showed an 8% risk reduction of death from all causes and a 22% risk reduction from cardiac death.

So the AHA had made recommendations that could possibly be harmful and certainly not helpful. Despite this great piece of investigative science, the AHA did not change it’s recommendations.

Since that time Christopher Ramsden and colleagues have published a sequel “to evaluate the effectiveness of replacing dietary saturated fat with omega 6 linoleic acid, for the secondary prevention of coronary heart disease and death”.

http://www.ncbi.nlm.nih.gov/pubmed/23386268

In their summary they stated:

“substituting dietary linoleic acid in place of saturated fats increased the rates of death from all causes, coronary heart disease, and cardiovascular disease. “

There you have it. The AHA has not withdrawn it’s dietary recommendations to increase n-6 fat despite the compelling evidence to the contrary. This is unfortunately a consistent pattern.

Why would an increase in omega 6 fats and a reduction in saturated fat increase cardiovascular events?

Here is one explanation which is supported by basic science. Omega 6 fats are PUFA (polyunsaturated). PUFA are easily oxidized but saturated fat is not. When PUFA sit in the membrane (outer wall) of LDL particles they become oxidized and the oxidized LDL particle stimulates macrophages (white blood cells) to become foam cells and create plaque in the walls of your arteries. Saturated fats are not easily oxidized. Saturated fats do not contribute to the formation of oxidized LDL.

The AHA encourages us to consume “vegetable oils” (oils made from corn, soy, cottonseed, safflower, etc) instead of saturated fat. The predominant fat in “vegetable oil” is linoleic acid, the major omega 6 fat in the American diet. Linoleic acid is not the hero in this story and saturated fat is not the villain that the AHA portrays it to be.

Having said that, one might ask the following. If PUFA are easily oxidized and omega 3 fats are are also PUFA, then how could omega 3 fats be “cardio-protective” while omega 6 fats are damaging?

Good question. That will be addressed in  future posts.

But before we get to that, there are other data on saturated fats that must be discussed in order to dispel the fear of saturated fat.  That data and discusion will come in the next post.

Go in peace, the post is ended.

Bob Hansen MD