Category Archives: stress

Chronic Pain Reduced by the Paleo Lifestyle

I spend 50% of my clinical time treating chronic pain patients. A paleolithic diet which consists of pastured grass-fed meat, free range poultry and eggs, fresh seafood, fresh vegetables, fruits and nuts decreases inflammation by eliminating major sources of dietary induced inflammation.

Yesterday I saw a patient one month after he started a paleolithic lifestyle (paleo diet, 8 hours of sleep per night- cycling with the sun, regular exercise including a prescribed spine rehab program).

Within 30 days his pain  has decreased by more than 50%, He feels  more energetic. He stated “I have started to dream again and get a full night’s sleep”. He has lost 12 pounds in one month and his blood pressure is down. He is ready to return to work after not working for eight months (with some activity restrictions). He is not taking any opiate pain medication.

His MRI scan and X-rays of the spine will not demonstrate any improvement. He still has degenerative disc disease, one or more tears in a disc annulus (outer wall of the disc) and arthritis in the facet joints of his neck (cervical spine) and lower back (lumbar spine). But the lifestyle elements that have contributed to his chronic inflammation have been significantly reduced in just 30 days and he has benefited “tremendously” in his own words.

There are many mechanisms involved with chronic inflammation. Most patients with chronic pain have an inflammatory component. Many patients with chronic pain are overweight or obese. Excess visceral adiposity (fat around the internal organs) creates a state of chronic inflammation by constantly producing inflammatory chemicals called chemokines and cytokines. These inflammatory mediators are produced by the fat cells and by the white blood cells (macrophages) that reside alongside the fat cells. They contribute to a process called central sensitization where the brain and spinal cord nerves that mediate pain  become sensitized and over-react to sensory input. Interleukin 6 is one of these mediators. Increased levels are associated with fatigue, depression and a state of hyperalgesia where painful stimuli are amplified. Tumor necrosis factor alpha is another important inflammatory mediator produced in excess when excess fat accumulates around the internal organs. Weight loss is essential to decease systemic inflammation, particularly in the setting of chronic pain when someone is overweight or obese.

Pro-inflammatory foods can also increase inflammation by altering intestinal flora and increasing intestinal permeability. These mechanisms have been discussed in previous posts and in the manifesto page of this website.

Few patients follow my dietary and lifestyle advice. Most seem to prefer taking pills, getting injections and other interventional pain procedures. In other words, they prefer to “be-fixed” rather than  take lifestyle initiatives that are likely to not only decrease their pain but also improve their general health. As an interventional pain practitioner I encourage patients to take full advantage of the pharmacology and interventional procedures that are likely to help. But without significant changes in bad dietary habits, poor sleep hygiene and without adopting a rehabilitation exercise program the pills and injections/procedures are much less effective and the prognosis is poor.

Stress reduction is also essential for health in general and for pain reduction in particular. Yet despite repeated recommendations to utilize an inexpensive stress reduction workbook, few patients ever bother to take this important step to reduce pain, anxiety and suffering.

Our culture is one in which patients expect to “be fixed” rather than to be led down a path which leads to healing and functional improvement by actively participating in their own rehabilitation and healing. Our culture is also one in which  major organizations provide bad dietary advice, particularly with respect to encouraging increased consumption of grains and legumes which have pro-inflammatory components and anti-nutrients. We evolved over a few million years without consuming grains, legumes, refined vegetable olis or dairy. Our evolutionary biology and physiology thrive when these foods, particularly processed foods are eliminated from the diet and we consume only those whole natural foods we have evolved to eat.

Modern medicine provides many remarkable drugs, surgeries and procedures that can be life saving and life altering. But application of this technology without addressing the fundamental determinants of health (proper nutrition, restorative sleep, judicious exercise, stress reduction, and restoration of circadian rhythm) yields much less benefit. Ultimately, unless we remove from our lives the destructive components of modern society and culture we cannot heal and instead continue to suffer from chronic degenerative diseases that cause pain, loss of intellect and loss of mobility.

No references tonight, just comments and reflection. References have been provided in previous posts.

Peace, health, and happiness.

Dr. Bob

Amputations, Gangrene and Carbohydrates

As an anesthesiologist I have spent more than 60,000 hours in the operating room and cared for over 30,000 patients. I often observe the end-results of bad dietary advice. I am referring to the liberal carbohydrate allowance that the American Diabetes Association and other agencies offer diabetics.

Today was a particularly poignant day as I cared for two diabetics who required amputations for complications of diabetes type II. These complications could have likely been avoided if our supermarkets were not stocked with high carb nutritionally deplete “food” AND if the ADA, physicians and nutritionists counseled diabetics to significantly reduce their carbohydrate intake. Instead, the low fat narrative has so predominated our culture, that we have taken our eyes off of the major dietary threats during the past 40 years, excessive carbohydrates and especially refined carbohydrates.

The leading cause of amputations in modern society are the complications of diabetes including peripheral arterial disease (atherosclerosis in the arteries to our limbs) and peripheral neuropathy (loss of sensation in the feet and hands). The combination of these two, or just one alone can lead to non-healing wounds and ulcers in the feet, then chronic infections and ultimately gangrene. Futile efforts to restore circulation to the legs with vascular bypass surgeries or arterial stents usually just briefly delay the inevitable series of amputations that start in the toes and progress up the leg, step by step until only a stump is left above the level once occupied by the knee.

Gangrene is an ugly thing. During the Civil War the major cause was trauma. Today the major cause is diabetes and indirectly, excess carbohydrate consumption.

The visual experience of gangrene results in a visceral reaction, even after more than 30 years of observation. The knowledge that most of these complications could be avoided by simply eating whole fresh foods instead of crap in a bag or crap in a box is frustrating. The human suffering and economic costs (lost wages, disability, medical expenses) are staggering. Diabetes type II is largely a disease of lifestyle. The lifestyle elements involved include poor dietary habits, lack of exercise, inadequate sleep, and stress. All of these contribute and all are modifiable and avoidable.

Type II diabetes is arguably reversible early in the disease process. As it progresses a patient reaches an irreversible point of no return where the pancreas has been exhausted and the insulin producing cells are no longer efficient and effective. Equally important,  the cells in the rest of the body do not respond in a normal fashion to what little insulin is produced. But even at this stage carbohydrate restriction can mitigate complications if only healthy fresh whole-foods are consumed and modest exercise is practiced on a daily basis.

Other complications of diabetes including blindness, painful neuropathy, kidney failure requiring dialysis, heart attack and stroke all are arguably avoidable with a whole foods paleolithic carbohydrate restricted diet and modest amounts of regular exercise.

What a pity, what a shame, what a waste.

Below are some links and research articles to back up my statements.

Peace, health, and harmony.

BOB

1. Type 2 Diabetes

2. American Diabetes Association Embraces Low-Carbohydrate Diets. Can You Believe It? | Richard David Feinman

3. Nutrition Science on Pinterest

4. Low-Carb for You: Low-Carb versus Low-Fat

And Many More:

Jenkins DJ, Kendall CW, McKeown-Eyssen G, Josse RG, Silverberg J, Booth GL, Vidgen E, Josse AR, Nguyen TH, Corrigan S et al: Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 2008, 300(23):2742-2753.

Westman EC, Yancy WS, Mavropoulos JC, Marquart M, McDuffie JR: The Effect of a Low-Carbohydrate, Ketogenic Diet Versus a Low-Glycemic Index Diet on Glycemic Control in Type 2 Diabetes Mellitus. Nutr Metab (Lond) 2008, 5(36).

Gannon MC, Hoover H, Nuttall FQ: Further decrease in glycated hemoglobin following ingestion of a LoBAG30 diet for 10 weeks compared to 5 weeks in people with untreated type 2 diabetes. Nutr Metab (Lond) 2010, 7:64.

Gannon MC, Nuttall FQ: Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr Metab (Lond) 2006, 3:16.

Gannon MC, Nuttall FQ: Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes 2004, 53(9):2375-2382.

Forsythe CE, Phinney SD, Feinman RD, Volk BM, Freidenreich D, Quann E, Ballard K, Puglisi MJ, Maresh CM, Kraemer WJ et al: Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet. Lipids 2010, 45(10):947-962.

Jakobsen MU, Overvad K, Dyerberg J, Schroll M, Heitmann BL: Dietary fat and risk of coronary heart disease: possible effect modification by gender and age. Am J Epidemiol 2004, 160(2):141-149.

Siri-Tarino PW, Sun Q, Hu FB, Krauss RM: Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 2010, 91(3):502-509.

Int J Cardiol. 2006 Jun 16;110(2):212-6. Epub 2005 Nov 16. Effect of a low-carbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. Westman EC, Yancy WS Jr, Olsen MK, Dudley T, Guyton JR.

Mol Cell Biochem. 2007 Aug;302(1-2):249-56. Epub 2007 Apr 20.Beneficial effects of ketogenic diet in obese diabetic subjects. Dashti HM, Mathew TC, Khadada M, Al-Mousawi M, Talib H, Asfar SK, Behbahani AI, Al-Zaid NS.

 

 

The Bacteria in your Gut are essential to your health Part I

Our human body consists of about 100 trillion cells but we carry about 1000 trillion bacteria in our intestines, that represents 10 times the amount of our own cells. (1) These bacteria are variously called our micro-flora, microbiome, gut flora, etc, along with viruses and other organisms that co-exist and co-evolved with us. Advances in rapid gene identification have enabled an explosion of knowledge related to our micro-flora, health and disease. We each carry an estimated 500 to 1000 different species of bacteria in our intestines and the balance/mix of these bacterial species can have profoundly positive or negative affects on our health. Patterns of micro-flora have been identified for a variety of human disorders including obesity, diabetes type I, several kinds of cancer and  inflammatory bowel disease to name a few. The issue of association vs. causation remains to be resolved but the beneficial and therapeutic effects of pro-biotics and fecal transplant (in rodent and human studies) in a variety of situations along with the observed deleterious effects of interrupting our micro-flora speak in favor of a causative or contributory role. (2) (3)

Accumulating evidences indicate that some diseases are triggered by abnormalities of the gut microbiota. Among these, immune-related diseases can be the promising targets for probiotcs. Several studies have proved the efficacy of probiotics for preventing such diseases including cancers, infections, allergies, inflammatory bowel diseases and autoimmune diseases. Lactobacillus casei strain Shirota (LcS) is one of the most popular probiotics, benefits of which in health maintenance and disease control have been supported by several science-based evidences.(2)

Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. (3)

Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization. (3)

The human GI tract starts with the mouth and ends with the rectum. In between lay the esophagus, stomach, and intestines which consist of the duodenum, jejunum, ileum, and colon.

The surface area of the intestines equals that of a tennis court providing a huge area for absorption, digestion and interaction between our immune system and the micro-flora. This large surface area is the result of the intestinal micro-villi which produce an undulating surface resembling a series of peaks and valleys. The constant interplay between our immune system (4) and our micro-flora from birth to death along with the signaling and communication that occurs between our micro-flora and our nervous system (5,6,7) present two physiologic mechanisms for potential symbiosis (mutually beneficial interaction) vs dysbiosis (disease causing relationship).

Before birth the mouth, skin and intestine of the fetus is sterile. The first major introduction of bacteria to the infant occurs with birth  when the infant swallows bacteria in the mother’s birth canal and the infant’s skin becomes colonized by the mother’s bacteria. Infants born by cesarean section lack this initial exposure and they suffer increased risk of allergic and auto-immune disease (8). The rate of cesarean section in the US is now about 30 % and along with that increase there has been an observed increase in allergy, auto-immune and other diseases.

The second major addition to human gut and skin flora occurs with breast feeding and again breast-fed infants show decreased rates of allergy and auto-immune disease as well as decreased infections compared to bottle fed infants.

The interaction between the micro-flora and the immune system presents many complex relationships and interactions. Immune tolerance allows the immune system to recognize “self” and “friendly bacteria”  limiting the development of auto-immune disease and enhancing anti-inflammatory processes. At the other extreme recognition of “non-self”  allows for the recognition and disposal of “foreign” invaders such as infections or mutated cancer cells.

“The Old Friends Hypothesis”
Common organisms interact with dendritic cells in the GI tract, leading to increased maturation of dendritic cells. When there is interaction with these organisms again, the dendritic cells increase Treg maturation; not Th1 or Th2. This increases the baseline amount of anti-inflammatory cytokines, producing a Bystander Suppression. Another consequence of the increased number of mature dendritic cells is as they interact with self antigens, they increase the number Treg specific to these antigens. This is referred to as Specific Suppression. Together these two arms lead to tolerance of both self antigens as well as those of helpful gut organisms. (8)

Translation:  Treg or Regulatory T cells regulate the immune system and help prevent auto-immune disease and allergic reactions. Th1 and Th2,  T helper cells , on the other hand, increase inflammation and help our bodies defend against infection. The balance between Tregs and Th1, Th2 cells governs inflammatory responses.

Premature infants have an increased risk of a developing a very severe illness called necrotizing enterocolitis. Human studies have demonstrated significant risk reduction for this problem with the administration of pro-biotics to infants in neonatal intensive care units. (9)

Similarly, administration of pro-biotics during the first few years of life (to mother and child)  have been associated with decreased risk of eczema in children. While some studies suggest reduction of allergies and asthma in children, the regular use of probiotics remains undecided relative to preventing food allergies or asthma (10, 11).

Due to the recent exponential increase in food allergies and atopic disorders, effective allergy prevention has become a public health priority in many developed regions. Important preventive strategies include the promotion of breastfeeding and vaginal deliveries, judicious use of perinatal antibiotics, as well as the avoidance of maternal tobacco smoking. Breastfeeding for at least 6 months and introduction of complementary solids from 4-6 months are generally recommended. Complex oligosaccharides in breast milk support the establishment of bifidobacteria in the neonatal gut which stimulate regulatory T lymphocyte responses and enhance tolerance development…Perinatal supplementation with probiotics and/or prebiotics may reduce the risk of atopic dermatitis, but no reliable effect on the prevention of food allergy or respiratory allergies has so far been found. A randomized trial on maternal fish oil supplementation during pregnancy found that atopic dermatitis and egg sensitization in the first year of life were significantly reduced, but no preventive effect for food allergies was demonstrated. (10)

Thus birth by cesarean section increases risk and  breast feeding decreases risk of immune related problems (allergies, auto-immune disease and infection ). Use of probiotics for mother and child decrease the risk of eczema but the use of probiotics in preventing asthma or food allergy remains unsettled. There are a host of possible probiotics available that include various combinations of “healthy bacteria”. Future posts will discuss some of these.

Our micro-flora are constantly exposed to potential changing agents. Known influences include antibiotics (as medications or in the foods that we eat), stress, sleep, and diet. Because of the ubiquitous use of antibiotics in agriculture and animal husbandry, and the sometimes excessive use of antibiotics in medicine our microbiome is frequently changed by external factors. Many experts on the microbiome  consider these influences harmful and attribute the rising rates of several diseases as consequences of disruption in our gut flora.

Clostridium Difficile Colitis , a serious infection or overgrowth of the bacterium Clostridium difficile in the intestine occurs most commonly as a result of antibiotic administration to treat infections. This serious problem responds to anti-biotic treatment (ironically both the cause and cure) 90% of the time with the first round of treatment but there is a high incidence of recurrence due to the fact that C-difficile spores are resistant to antibiotics and can cause recurrent infection. In refractory or recurrent C-difficile cases a fecal transplant (FMT or fecal microbiota transplant) from a healthy human results in a 90 to 95% cure rate with the first treatment.

Antibiotic usage disrupts the normal gut flora and leads to an increased predisposition to CDI. The risk of recurrent CDI after initial treatment of the first infection is approximately 20–25% [Kelly and Lamont, 2008; Khanna et al. 2012g] and is further increased up to 60% with the use of additional systemic antibiotics and subsequent CDI recurrences [Hu et al. 2009]. The pathophysiology of recurrent CDI involves ongoing disruption of the normal fecal flora and an inadequate host immune response. Standard CDI treatment with antibiotics such as metronidazole and vancomycin further disrupts colonic microbial communities that normally keep expansion of C. difficile populations in check. Since C. difficile spores are resistant to antibiotic therapy for CDI, they can germinate to vegetative forms after treatment has been discontinued and lead to recurrent CDI. (12)

The authors of this study review the data for fecal microbiota transplant and summarize by stating:

Therefore, existing literature suggests that fecal transplant is safe and effective with over 500 cases of recurrent CDI with no serious adverse events reported to date. FMT appears to be an appropriate treatment option for multiple CDI recurrences and may be considered for refractory moderate to severe C. difficile diarrhea, failing standard therapy. The FDA had recently announced that an Investigational New Drug Application would be required for use of FMT for CDI, but this was later changed to the use of an informed consent process to ensure communication of potential risks.

In the area of obesity rodent studies have demonstrated that fecal transplants from thin to obese subjects results in significant weight loss. Measurable differences in the microbiome of obese vs thin humans have been identified.

The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. (13)

The issue of gut flora and obesity deserves a dedicated post. Multiple research articles and review articles have been published on the topic of fecal transplantation in relation to obesity, diabetes, metabolic syndrome, autoimmune disease and cancer. (14,15,16)

Diabetes, obesity, allergy, auto-immune disease, infections, psychiatric disorders and cancer represent examples of the potential interplay between the human microbiome, human health and disease. Multiple sources of information suggest a cause and effect relationship. The results of fecal transplantation in human and rodent studies, manipulation of the gut flora with pro-biotics and pre-biotics, data on the effects of vaginal vs cesarean delivery, and the benefits of breast feeding all proclaim the importance of our micro-flora.

Most traditional cultures have one or more forms of fermented foods. Examples include yogurt, kefir, sauerkraut, kim chee, beet kvass, kombucha. Almost any food can be fermented to produce health promoting probiotics and there is a growing movement for home-fermentation and/or consumption of purchased fermented foods. In addition to the pro-biotic nature of fermented foods and beverages, fermentation offers other potential health benefits. These include reduction of the anti-nutrients found  in various neolithic  foods (such as mineral binding phytic acid found in grains and legumes, digestive enzyme inhibitors found in soy and other legumes). Other potential health benefits include the production of Vitamin K2 found in many fermented foods.

This discussion barely scratches the surface of gut flora, health and disease. Future posts will address how our gut bacteria produce essential nutrients and affect mental health as well as physical health. Other important topics include how our activity, food, sleep and stress affect the our gut ecology. The system is dynamic with effects going in both directions.

Following the references below you will find links to NPR discussions of related topics. You can choose to read the articles and/or listen to the NPR interviews and reports.

Peace, happiness and longevity.

BOB

(1) Microbes in Gastrointestinal Health and Disease

(2) Probiotics as efficient immunopotentiators: Translational role in cancer prevention

(3) Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces.

(4) Has the microbiota played a critical role in the evolution of the adaptive immune system?

(5) It’s a Gut Feeling – how the gut microbiota affect… [J Physiol. 2014] – PubMed – NCBI

(6) Metabolic tinkering by the gut microbiome: Impl… [Gut Microbes. 2014] – PubMed – NCBI

(7) The gut-brain axis rewired: adding a functional vaga… [FASEB J. 2014] – PubMed – NCBI

(8) Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis.

(9) Probiotics for prevention of necrotizing enterocolitis in preterm infants.

(10) Preventing atopy and allergic disease.

(11) Gut microbiota and allergic disease: new findings.

(12) Clostridium Difficile Colitis ,

(13) Gut microbiome, obesity, and metabolic dysfunc… [J Clin Invest. 2011] – PubMed – NCBI

(14) Fecal microbiota transplantation: indications, methods, evidence, and future directions.

(15) Fecal microbiota transplantation: past, present and future.

(16) Therapeutic potential of fecal microbiota transplantation.

Here are the NPR and other links.

Interview: Martin Blaser, Author Of ‘Missing Microbes’ : NPR

FDA Backs Off On Regulation Of Fecal Transplants : Shots – Health News : NPR

Human Microbiome Project – Home | NIH Common Fund

Staying Healthy May Mean Learning To Love Our Microbiomes : Shots – Health News : NPR

Gut Bacteria Might Guide The Workings Of Our Minds : Shots – Health News : NPR

Worried That Your Baby’s Sick? There May Be An Upside : Shots – Health News : NPR

The Ornish Low Fat Vegetarian Diet, does it work?

Dr. Dean Ornish has done wonderful research in the area of cardiovascular disease and lifestyle intervention. His study on comprehensive lifestyle intervention (1) is often quoted to support a low fat vegetarian diet as treatment for cardiovascular disease. But his “Intensive lifestyle changes for reversal of coronary heart disease” included several components that would be expected to improve health and decrease cardiovascular risk independent of a vegetarian diet as will be discussed below.

Let’s review what this study did.

48 patients with diagnosed moderate to severe coronary artery disease were randomized to one of two treatment groups, an “intensive lifestyle change” (ILC) group or a “usual-care” (UC) control group. 28 patients were allocated randomly to the ILC group and 20 were allocated to the UC group. Out of 48 patients starting the study only 35 completed the study,   20 out of 28 in the ILC group completed the study and 15 out of 20 in the UC group completed the study.

The intensive lifestyle change group followed this program:

  • 10% fat whole foods vegetarian diet
  • daily aerobic exercise
  • stress management training (training in and daily performance of meditation and/or yoga)
  • smoke cessation (they quit smoking)
  • group psychosocial support (3 hour group therapy sessions)

At the start of the study only one patient in the ILC group was smoking and she quit. We do not know how many smokers were in the UC group or how many quit. (I consider that a deficiency of this study. Because smoking is such a significant determinant of cardiovascular outcome, details of smoking at start and end of the study for both groups should have been reported)

At the end of five years the intensive lifestyle change group demonstrated an average 3.1% absolute reduction in the coronary artery blockage as measured by coronary arteriograms (or to put it another way, the diameter of the blocked coronary arteries increased by 3.1%). The usual care group (receiving cholesterol lowering statin drugs) showed an average 2.3% absolute increase in the coronary artery blockage (2.3% reduction in diameter). These are not huge changes or differences but they were measurable and statistically significant.

Twenty five total  “cardiac events” occurred in the 28 patients randomized to the intensive lifestyle change group over the five years and 45 cardiac events occurred in the 20 patients randomized to the “usual care” group (receiving cholesterol lowering statin drugs). But this was due to differences in the number of hospitalizations and angioplasties. There was no statistically significant difference in the number of deaths, heart attacks or coronary artery bypass surgeries.

By the end of the study 2 patients in the ILC group had died compared to 1 death in the usual care group but as mentioned above, this difference was not statistically significant.  We do not know how many deaths occurred in the 8 patients who dropped out of the treatment group or in the 5 patients who dropped out of the usual care group, nor do we know any of the other outcomes for the drop-out patients.

So there were no lives saved by the intensive lifestyle change program and no reduction in the number of heart attacks. In fact the ILC group had 2 deaths compared to 1 in the usual care group.

What does this all mean and why has the Ornish Diet attracted so much attention.?

First, I would suggest that the demonstrated benefits (reductions in the number of angioplasties and hospitalizations) are likely explained by the following parts of the lifestyle changes.

  1. stress reduction training and implementation (meditation and yoga)
  2. elimination of manufactured trans-fats from the diet
  3. elimination of unhealthy pro-inflammatory excess omega six fats (vegetable oils) from the diet
  4. elimination/reduction of processed carbohydrates and sugar.

Although the intensive lifestyle intervention included regular exercise the data show no significant difference in times per week or hours per week of exercise at the end of the study between the two groups.

The big difference was in stress management. The ILC group averaged practicing meditation and/or yoga 5 times per week (48 minutes per day) versus less that once per week (8 minutes per day) in the usual care group.

Stress reduction is a major issue in any disease and in particular in cardiovascular disease.

Several studies have demonstrated that the daily practice of meditation  improves immune function, increases telomerase activity, reduces inflammatory markers, and reduces circulating stress hormones (cortisol and epinephrine) independent of dietary changes.
Meditation has also been observed to improve “endothelial function”, the ability of the cells that line arteries to respond to changes in demand. (2,3,4,5,6,7)

Here is a press release from the American Heart Association 13 November 2012. (8)

“African Americans with heart disease who practiced Transcendental Meditation regularly were 48 percent less likely to have a heart attack, stroke or die from all causes compared with African Americans who attended a health education class over more than five years, according to new research published in the American Heart Association journal Circulation: Cardiovascular Quality and Outcomes.

Those practicing meditation also lowered their blood pressure and reported less stress and anger. And the more regularly patients meditated, the greater their survival, said researchers who conducted the study at the Medical College of Wisconsin in Milwaukee.”

I believe the major benefit of the interventional program was from the stress reduction and the elimination of three major dietary sources of trouble (trans-fats, excess omega 6 fats from processed-refined vegetable oils, and refined carbohydrates-sugar)

I have already discussed in other posts the problems associated with excess omega 6 fats and refined carbohydrates-sugar relative to cardiovascular risk. (9,10,11)

There is little controversy that elimination/reduction in trans-fats produces benefit. (12,13,14)

All three of these changes were essential to the whole foods approach of the intervention group.

I have also discussed the lack of data to support the contention that saturated fat from animal sources of protein contributes to cardiovascular disease. (15, 16))

I remain a strong proponent of a whole foods diet that includes a variety and abundance of organic vegetables and fruits, nuts, pastured grass-fed meat, fresh wild seafood, free-range organic poultry and eggs from that kind of poultry.  This diet represents the foods we have evolved to eat, free from added sugar, hormones, antibiotics, pesticides. This dietary approach also produces a healthy balance of omega 6 to omega 3 fatty acid as well as a significant improvement in the ratio of potassium to sodium.

Stress reduction should be an essential part of our lives and data on this aspect of health will be discussed in future posts. References for this discussion appear below.

Peace,

BOB Hansen MD

REFERENCES:

1. JAMA Network | JAMA | Intensive Lifestyle Changes for Reversal of Coronary Heart Disease

2. Intensive meditation training, immune cell telomerase activity, and psychological mediators.

3. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres.

4. A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: effects on mental health, cognition, and telomerase activity.

5. Meditation Improves Endothelial Function in Metabolic Syndrome, American Psychosomatic Society (APS) 69th Annual Scientific Meeting: Abstract 1639. Presented March 10, 2011.

6. Alterations in brain and immune function produced by mindfulness meditation.

7. Adrenocortical activity during meditation.

8. Meditation may reduce death, heart attack and stroke in heart patients | American Heart Association

9. Polyunsaturated fat, Saturated fat and the AHA

10, Lose weight, control blood sugar, reduce inflammation

11. Sugar, a serious addiction

12. The negative effects of hydrogenated trans fats and what to do about them.

13. Trans fats in America: a review of their use… [J Am Diet Assoc. 2010] – PubMed – NCBI

14. FDA to Ban Trans Fats in Foods – US News and World Report

15. saturated fat | Practical Evolutionary Health

16. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease.

Introduction

Practical Evolutionary Health

Americans spend almost twice as much per person on health care than the rest of the developed world yet we rank between 20 and 30 on most measures of public health. Why is that? The answer lies in our cultural habits, shaped in no small part by the marketing departments and sales forces of corporate America. Lifestyle and personal habits, in the broadest sense, determine our longevity and functional status (both physical and mental) as we age more than any drug or surgery. Dissecting how corporate America shapes and affects our health requires us to explore several layers. The first layer includes the food, pharmaceutical and medical device industries. But looking deeper at what shapes our culture and therefore our health, we must recognize the way our consumer driven economy shapes our culture with regard to the essential ingredients of health and disease.

This blog will explore the science and economics of health in an attempt to answer the “why is that?” above. The framework of this exploration will utilize a practical evolutionary-medicine perspective.

For a few million years our ancestors lived as hunter-gatherers. That period represents more than 99% of our evolutionary history. During that period our sleep habits cycled with the sun, we exercised regularly to obtain food, we ate fresh foods that included wild game and seafood, berries, nuts, tubers and  some wild plants, we rested allot, and enjoyed the benefits of small intimate social networks. After a few million years evolving in that manner we introduced agriculture, bred grass seeds into grains, bred wild fruits and vegetables into a variety of agricultural products with very different nutritional profiles as compared to the wild predecessors, and domesticated animals. Beyond that, we entered a period of industrialization that  has altered our eating, sleeping, social and exercise habits in a profound and  detrimental manner.

Convenience foods have been engineered in human laboratories to present flavors, textures, appearances and just the right mix of sugar-salt-fat to stimulate excessive consumption of nutritionally deplete calories. Mono-agriculture has depleted our soil both quantitatively and qualitatively. Corporate farming and animal husbandry have introduced the unnecessary and harmful use of antibiotics, hormones, insecticides and pesticides in the name of efficiency. Shift factory work has disrupted the circadian rhythm of millions of workers, increasing the risk of cancer, diabetes, obesity, depression and accidents to name a few. Artificial light has interfered with the procurement of adequate restorative sleep so essential for health. And  modern society has depleted our social network of meaningful supportive relationships and meaningful work.

That is the big picture, but what is the scientific data to support these statements? And what can we do to recapture the essential ingredients of healthy living while bringing home a paycheck? That is what this blog is about.

The Manifesto page represents a summary opinion of important topics related to health.

My posts will generally address topics covered in the Manifesto.

Bob Hansen MD